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Abstract

In recent works, neural networks’ training speed has been found to have an intriguing

connection with their generalisation performance [Lyle et al., 2020, Ru et al.,

2020, Jiang et al., 2020]. However, the mechanism causing this connection is not

entirely clear for deep neural networks. In this dissertation, we came up with the

robust flatness hypothesis and the gradient transfer hypothesis, either of which can

potentially explain this connection. Additionally, we conducted a large number of

neural network training experiments, aiming to find out the conditions under which

the hypotheses might hold.

The experimental results confirmed that the connection between training speed

and generalisation is robust: it can be observed with two popular neural archi-

tecture choices (SkipInit and ResNet), two optimiser choices (Stochastic Gradient

Descent and Stochastic Gradient Langevin Dynamics), and with or without data

augmentation by logit averaging. Further, we concluded that the robust flatness

hypothesis might explain the connection except when Stochastic Gradient Langevin

Dynamics is used. The gradient transfer hypothesis might explain the connection

except when Stochastic Gradient Langevin Dynamics or the ResNet architecture

is used. The conclusions reached are a step towards explaining the generalisation

of neural networks via their training speed.
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1.1 Motivation

The problem of how neural networks generalise to unseen data has been pondered

upon and is considered not fully understood. There have been numerous attempts

at bounding the generalisation performances using classical methods from a learning

theory perspective. Hardt et al. [2016] showed that when stochastic gradient descent

is used as the optimisation method, parametric models have vanishing generalisation

errors; Hochreiter and Schmidhuber [1997] and Keskar et al. [2017] demonstrated

that the network flatness can explain generalisation from a lower function complexity

perspective; McAllester [1999] drew from the probably approximately correct theory

and the Bayesian theory of learning and derived a bound for generalisation; Jacot

et al. [2018] used infinite-width network dynamics to explain generalisation. However,

these methods suffer from serious flaws such as vacuous bounds, as pointed out by

2
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Dziugaite and Roy [2017] and Neyshabur et al. [2017]; or paradoxical behaviours

under equivalent network reparameterisation shown by Dinh et al. [2017]; or

unrealistic assumptions such as the network being infinitely wide. The neural

network community is still in search of plausible explanations of generalisation,

with non-vacuous bounds, based on realistic assumptions.

1.2 Overview

Recently, there have been studies on using optimisation-based complexity measures

to predict generalisation [Jiang et al., 2020, Lyle et al., 2020, Ru et al., 2020]. In

particular, training speed as a generalisation measure has been studied for infinitely

wide neural networks and linear models by Lyle et al. [2020]. Its predictive power of

generalisation for deep neural networks was utilised for Neural Architecture Search

by Ru et al. [2020]. However, there has been little research into the mechanism

behind this predictive power for finitely wide neural networks. In this dissertation,

we present an empirical study of training speed’s predictive power for deep neural

networks, as well as an investigation into the underlying mechanism. The central

question this empirical investigation sets out to answer is whether there is a known

connecting training speed and generalisation. And if yes, what are the necessary

conditions for such mechanisms to apply in practice.

1.3 Outline

Chapter 2 We give a brief introduction to neural network training, generalisation,

and why existing theories cannot fully explain generalisation satisfactorily while

introducing notations that will be used throughout the dissertation. Then, we

introduce theories looking at different aspects of neural networks that might

explain the generalisation mystery. Training speed as a complexity measure and its

connections with the prior theories are also covered in this chapter.
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Chapter 3 We introduce the robust flatness hypothesis and the gradient transfer

hypothesis, which can explain the connection between training speed and generalisa-

tion. The experimental setup for these two hypotheses is explained and the central

question this dissertation tries to answer is brought up: what are the conditions under

which these hypotheses might be true in the practice of neural network training.

Chapter 4 We present the experimental results. We then analyse the scope of

the two hypotheses and various findings in the experiments.

Chapter 5 We conclude the dissertation by summarising the experimental insights

and point out the future directions for pursuing a further understanding of training

speed and generalisation.

1.4 Contributions

• We came up with two hypotheses, robust flatness and gradient transfer

that might potentially explain the connection between training speed and

generalisation, based on prior theories.

• We conducted experiments with 6 different groups of experiments over a wide

range of hyperparameters, each isolating one individual neural network training

technique used in practice, including data augmentation with transformation

and logit averaging, the Stochastic Gradient Langevin Dynamics optimiser,

the Multi-Layer Perceptron architecture, and Batch Normalization. The

experiment groups are representative of a large regime of neural networks that

solves visual tasks.

• Drawing on the experimental results, we confirmed the connection between

training speed and generalisation, on a large family of finite neural networks.

Further, we found the conditions under which each of our hypotheses might

explain the connection.
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2.1 Neural Networks and Generalisation

Neural networks are parametric models often used to carry out standard statistical

learning tasks such as regression and classification. In statistical learning, the

objective is to estimate a set of parameters that can describe the data well from a

finite set of training examples. For convenience, we lump the network weights into

one single vector θ = [θT1 , θT2 , . . . , θTL ]T , where θ1, θ2, . . . , θL are network weights in

each of its L layers. The network implements a function fθ : X 7→ Y .

5
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We denote the finite training set by Dtrain = {(xi, yi)}mi=1, where each data pair

(xi, yi) is assumed to have been generated from an underlying distribution (xi, yi) ∼

DX,Y . The risk associated with the network function fθ on a single datapoint (x, y)

measures the dissimilarity between our prediction fθ(x) and the ground truth y. It

is denoted by R (fθ (x) , y), where R measures the risk on a single pair of prediction

and target. R is also called the loss function.

Definition 2.1 (Empirical Risk and Population Risk). The empirical risk is the

average risk on the training dataset, defined as

Remp (θ,Dtrain) def= 1
m

m∑
i=1

R (fθ (xi) , yi) . (2.1.0.1)

And the population risk is the expected risk over the underlying data generating

distribution, defined as

Rpop (θ,DX,Y ) def= E(x,y)∼DX,Y [R (fθ (x) , y)]. (2.1.0.2)

Definition 2.2 (Empirical Risk Minimisation and Generalisation Error). Given

a fixed training set and underlying distribution, we wish to find a set of weights

θ∗ that minimises the population risk. However, in practice, we often do not know

the underlying data generating distribution DX,Y and use the empirical risk as a

surrogate to minimise. This is called Empirical Risk Minimisation (ERM). The

objective of ERM is to find a set of weights that minimises the empirical risk:

θ̂ = arg min
θ

Remp (θ,Dtrain) . (2.1.0.3)

The generalisation error measures the difference between the population risk and

the empirical risk, for the set of weights found:

gen
(
θ̂, Dtrain,DX,Y

) def= Rpop

(
θ̂,DX,Y

)
−Remp

(
θ̂, Dtrain

)
. (2.1.0.4)

When it is clear from the context, we will omit Dtrain and DX,Y .

Without knowing DX,Y but being able to sample from it, we generate a test set

Dtest = {x̂i, ŷi}m̂i=1, where (x̂i, ŷi) ∼ DX,Y , and estimate the population risk by

calculating the empirical risk on the test set:

E(x,y)∼DX,Y [R (fθ (x) , y)] ≈ Remp

(
θ̂, Dtest

)
= 1
m̂

m̂∑
i=1

R (fθ (x̂i) , ŷi) . (2.1.0.5)
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Then we can estimate the generalisation error by

gen
(
θ̂, Dtrain,DX,Y

)
≈ Remp

(
θ̂, Dtest

)
−Remp

(
θ̂, Dtrain

)
= 1
m̂

m̂∑
i=1

R (fθ (x̂i) , ŷi)−
1
m

m∑
i=1

R (fθ (xi) , yi) .
(2.1.0.6)

2.2 Existing Theories Cannot Explain Generali-
sation in Neural Networks

Classical theories based on the concepts of VC dimension [Vapnik, 1998], Rademacher

complexity [Bartlett and Mendelson, 2002], and uniform stability [Mukherjee et al.,

2006, Bousquet and Elisseeff, 2002, Poggio et al., 2004] etc. have been considered

by the research community to explain generalisation. However, there are significant

differences between neural networks and conventional models of learning. One major

difference is that modern artificial neural networks often have a much larger effective

capacity [Neyshabur et al., 2015b]. Zhang et al. [2017] showed that, as a consequence,

some successful network architectures can perfectly fit the training data when their

labels have been randomly permuted. They further showed that the effective

capacities of several network architectures are so large that they shatter the training

data: a near-zero training loss can be achieved even when the inputs are random

Gaussian noises. This poses significant challenges to explaining generalisation with

the classical theories of learning, as they give vacuous bounds for the generalisation

error in the case of deep neural networks. For example, the randomization tests in

[Zhang et al., 2017] suggest that the Rademacher complexity for the corresponding

class of models is close to 1. Hence, bounds based on Rademacher complexity are not

in general useful for explaining generalisation. The existing generalisation bounds

are therefore of little use when it comes to explaining neural networks. Instead, some

more recent theoretical results were specifically derived for the purpose of explaining

neural network generalisation. They focus on properties and practices that have

not been closely studied before, which we will review in detail in Section 2.3.
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2.3 Theories and Empirical Studies of Neural Net-
work Generalisation

We first review theories for neural network generalisation from the perspective of

the optimisation algorithm, the network flatness, and the training dynamics. A

subsection focusing on empirical studies of complexity measures for generalisation

is presented afterwards.

2.3.1 Stochastic Gradient Descent

Gradient descent is a method of minimising an objective function J(θ) parameterised

by model parameters θ by updating parameters in the opposite direction to the

gradient ∇θJ(θ). When training neural networks, we perform ERM as in Definition

2.2 and use Remp(θ,Dtrain) as our objective function. Partially because of the

high computational cost of calculating the full batch gradient ∇θRemp(θ,Dtrain),

in practice, Stochastic Gradient Descent is often used.

Definition 2.3 (Stochastic Gradient Method (SGM)). Let αt be the learning rate

at the t-th step of update. Consider weights of a network being updated with the

following rule:

θ = θ − αt · ∇θRemp

(
θ, {xj, yj}(t+1)∗s−1

j=t∗s

)
, (2.3.1.1)

where s is the batch size. When s = 1, this optimisation method is called Stochastic

Gradient Descent (SGD) and when s > 1, it is referred to as mini-batch SGD.

SGD is often used in practice. The training data is randomly split into mini-batches

of s training examples and the update rule becomes:

θ = θ − η · ∇θRemp

(
θ, {xj, yj}i+s−1

j=i

)
, (2.3.1.2)

where {xj, yj}i+s−1
j=i is one mini-batch. We should note that our notation of

SGD might be called mini-batch gradient descent in other texts and should be

differentiated from the notion of SGD where n is limited to be 1. We will now

discuss works that establish connections between SGD and generalisation.



2. Background 9

Uniform stability bounds Hardt et al. [2016] showed that parametric models

have vanishing generalisation errors when they are trained by SGD. Their analysis

is based on the algorithmic stability [Bousquet and Elisseeff, 2002] of the SGD.

Definition 2.4 (Uniform Stability, Definition 2.1 in [Hardt et al., 2016]). A

randomised algorithm A : (X, Y )n → Θ can learn a set of weights from a given

training set. We say that A is ε-uniformly stable if for all datasets D1, D2 ∼ (X, Y )n

such that D1 and D2 differ by at most one example, we have

sup
(x,y)

EA
[
R
(
fA(D1) (x) , y

)
−R

(
fA(D2) (x) , y

)]
≤ ε, (2.3.1.3)

where the expectation is taken over the randomness of A and we use εstab to denote

the infimum over all ε for which Inequality 2.3.1.3 holds.

Hardt et al. [2016] upper-bounded the generalisation error of a non-convex model

by the number of training iterations SGD takes.

Theorem 2.5 (Theorem 3.12 in [Hardt et al., 2016]). Assume that L
(
f(·) (x) , y

)
∈

[0, 1] is an L-Lipschitz and β-smooth loss function for every (x, y): Suppose that we

run SGD for T steps with monotonically non-increasing step sizes αt ≤ c/t. Then,

SGD has uniform stability with

εstab ≤
1 + 1/βc
n− 1

(
2cL2

) 1
βc+1 T

βc
βc+1 (2.3.1.4)

With this result, it can be further shown that the expectation of the generalisation

error is upper-bounded by the same quantity. Therefore, from this notion of

algorithmic stability, we have a theory of why neural networks trained with SGD

can generalise.

In modern practices, the hyper-parameters of neural networks often cause equation

2.3.1.4 to give a vacuous bound, yet they still exhibit good generalisation abilities.

This suggests that uniform stability does not give a full account for the generalisation

power of modern neural networks by itself.
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The implicit regularisation effects of SGD It is understood that SGD, in

the limit of vanishing learning rates, follows the gradient flow on the full batch loss

function [Yaida, 2019]. However, in practice, slightly larger learning rates are found

to have better generalisation performances [LeCun et al., 2012, Keskar et al., 2017],

which is not explained by generalisation bounds. Smith et al. [2021] showed that for

SGD with random shuffling, the mean SGD iterate stays close to the gradient flow of

a modified loss function. We denote the average mini-batch gradient norms by Rreg:

Rreg = 1
B

B−1∑
b=0
‖∇θRemp

(
θ, {(xj , yj)}(b+1)∗s−1

j=b∗s

)
‖2. (2.3.1.5)

The modified loss penalises this quantity Rreg. Namely, the modified loss is

RSGD
emp (θ,Dtrain) = Remp (θ,Dtrain) + ηRreg (θ,Dtrain, B)

= Remp (θ,Dtrain) + η · 1
B

B−1∑
b=0
‖∇θRemp

(
θ, {(xj , yj)}(b+1)∗s−1

j=b∗s

)
‖2,

(2.3.1.6)

where η is the learning rate, B is the number of mini-batches in one epoch, s

is the batch size, and Remp

(
θ, {(xj , yj)}(b+1)∗s−1

j=b∗s

)
is the empirical risk on the

b-th mini-batch.

By proving that the mean SGD iterate is close to the gradient flow of a loss function

that penalises the gradient norm, the implicit regularisation effects of SGD can

potentially be linked to the flatness of minima. They also conducted experiments

where a small learning rate and explicitly regularisation of the gradient norm were

used to reproduce the generalisation performance with a larger learning rate.

2.3.2 Network Flatness

It was argued by both Hochreiter and Schmidhuber [1997] and Keskar et al. [2017]

that generalisation might be explained by the flatness of the minima found by the

optimisation algorithm, although Hochreiter and Schmidhuber [1997] and Keskar

et al. [2017] used their own distinct notions of flatness. Dinh et al. [2017] refuted

the idea that flatness in either definition can explain generalisation by itself, by

introducing a reparametrisation on deep rectified networks that make equivalent
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minima to change their sharpness arbitrarily. However, there are still interesting

aspects of flatness that bear the hope of explaining generalisation.

Volume ε-sharpness In [Hochreiter and Schmidhuber, 1997] a flat minimum

was defined as “a large connected region in weight space where the error remains

approximately constant.” They argued for explaining generalisation with network

flatness from two perspectives: (1) It requires fewer bits of information to describe

a flatter minimum (see Section 4.6 of [Hochreiter and Schmidhuber, 1997] for a

justification). A smaller Minimum Description Length (MDL) for a set of weights

indicates that the network function has a smaller Kolmogorov complexity [Li and

Vitányi, 2019]. And a lower network function complexity can in turn attribute to

a high generalisation performance [Rissanen, 1983]. (2) In a standard Bayesian

view, a minimum with a larger posterior mass contributes more to the inference.

Section 6.2 of [Buntine and Weigend, 1991] further suggests that minima with

large posterior masses (fat minima) are also flat minima. Both the MDL and the

Bayesian principles incentive us to prefer flatter minima.

Dinh et al. [2017] interpreted this flat minimum in the format of a complexity measure

called volume ε-sharpness: Given ε > 0, a minimum θ, and a loss Remp, we can define

C (Remp, θ, ε) as the largest connected set such that ∀θ′ ∈ C (Remp, θ, ε) , Remp(θ′) <

Remp(θ) + ε. The volume ε-sharpness is the volume of C (Remp, θ, ε).

Dinh et al. [2017] subsequently showed that for every minimum of deep rectified

networks, there is a connected region of infinitely large volume, in which the loss

remains approximately constant. Hence the volume ε-sharpness cannot explain

generalisation of deep rectified networks by itself. However, there is some subtle

difference in the definition of volume ε-sharpness by Dinh et al. [2017] and the original

definition. Instead of using an unrestricted connected region around the minimum,

Hochreiter and Schmidhuber [1997] considered a box, defined as “an L-dimensional

hypercuboid” with its centre at the minimum. This restriction potentially makes

volume ε-sharpness more robust to the reparametrisation by Dinh et al. [2017].
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ε-sharpness Keskar et al. [2017] suggested that the drop in performance for

large-batch-size optimisation could be attributed to that they tend to converge

to sharp minima. Through experiments with different architectures, they found

that larger batch sizes are correlated with sharper minima and worse generalisation.

The flatness metric they used was called the ε-sharpness in [Dinh et al., 2017]: Let

B2 (ε, θ) be an Euclidean ball in the weight space of radius ε centered at a minimum

θ. The ε-sharpness is then defined as proportional to

maxθ′∈B2(ε,θ) (Remp (θ′)−Remp (θ))
1 +Remp (θ′) . (2.3.2.1)

Dinh et al. [2017] found that with the same reparametrisation scheme, every

minimum in deep rectified networks is observationally equivalent to a minimum

that generalises as well but with high ε-sharpness. Therefore, some limits of

explaining generalisation with this flatness measure are also exposed. We note

that these flatness measures only look at the final weights of the network, instead

of the whole training trajectory.

PAC-Bayes Sharpness McAllester [1999] introduced the PAC-Bayesian frame-

work. The PAC-Bayesian bound derived in the framework states that the expected

generalisation error over the posterior weight distribution can be bounded by the

Kullback–Leibler (KL) divergence between the prior and the posterior. Further,

Dziugaite and Roy [2017] showed that by optimising the bound over Gaussian pos-

teriors, non-vacuous bounds can be achieved. Neyshabur et al. [2017] demonstrated,

with small-scale experiments, that isotropic Gaussian priors and posteriors make

PAC-Bayesian sharpness a good measure of generalisation. To define the PAC-Bayes

sharpness, we first define the 0-1 loss on a single datapoint (x, y):

R̂(fθ(x), y) = 1

[
arg max

i
fθ(x)i = y

]
. (2.3.2.2)

Hence, we can define the empirical 0-1 loss, or the empirical accuracy:

R̂emp (θ,Dtrain) = 1
| Dtrain |

|Dtrain|∑
i=1

R̂(fθ(xi, yi)). (2.3.2.3)
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The PAC-Bayes sharpness can be calculated as such:

σ̂2 = sup
(
{σ2 | Eθ′∼N (θ,σ2I)

[
R̂emp(θ′, Dtrain)

]
≤ 0.1}

)
,

PAC-Bayes Sharpness = 1
σ̂2 . (2.3.2.4)

This form of PAC-Bayes sharpness defined by Equation 2.3.2.4 is also more

computationally efficient than that proposed by Dziugaite and Roy [2017].

2.3.3 Learning Dynamics

We review three different perspectives regarding training dynamics to view generali-

sation: stiffness, neural tangent kernels, and the lottery ticket hypothesis.

Stiffness Fort et al. [2019] advocated to look at generalisation with a new measure:

stiffness. We can define stiffness with respect to the loss function R, the function

implemented by the network forward operation fθ, the network weights θ and

two datapoints (x1, y1) , (x2, y2) from some distributions D1 and D2 respectively.

The gradients of the loss function with respect to the network’s weights on the

two datapoints are:

g1 = ∇θR (fθ (x1) , y1) , g2 = ∇θR (fθ (x2) , y2) . (2.3.3.1)

There are two meaningful quantities, the sign of the gradient product sign (g1 · g2),

and the cosine value of the angle between the two gradients g1·g2
‖g1·g2‖ . By taking the

expectation of these two quantities, we have the sign stiffness and the cosine stiffness:

Ssign = E(x1,y1)∼D1,(x2,y2)∼D2 [sign(g1 · g2)],

Scos = E(x1,y1)∼D1,(x2,y2)∼D2

[
g1 · g2

‖g1 · g2‖

]
.

(2.3.3.2)

Stiffness is dependent on the distributions D1 and D2. If both D1 and D2 are

the training distribution, the quantities are called train-train stiffness. If both

are the validation distribution, they are called val-val stiffness. If one of D1 and

D2 is the training distribution and the other one is the validation distribution,
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they are called train-val stiffness. In practice, we use a Monte-Carlo estimator

to estimate the stiffness values.

Gradient confusion Sankararaman et al. [2020] proposed a similar measure with

stiffness which is correlated with training speed: gradient confusion. For a dataset

with m datapoints {(xi, yi)}mi=1, the gradient confusion is defined as:

ζ = max
(

0,−min
i 6=j

(∇θR (fθ (xi) , yi) · ∇θR (fθ (xj) , yj))
)
. (2.3.3.3)

Both are quantities based on dot products of the loss function gradients, stiffness

is an estimator of the average over the entire dataset, while gradient confusion

is the opposite of the minimum value of the gradient dot products between any

two datapoints in the dataset.

Sankararaman et al. [2020] observed that when gradient confusion is large, the

gradient updates on different datapoints differ strongly, and training becomes slower

as a consequence; vice versa, when gradient confusion is small, the gradient updates

on different datapoints interact harmoniously, leading to faster convergence.

Gradient variance Inspired by Chaudhari and Soatto [2018] and Smith and Le

[2018], the variance of the loss gradient can be used as a generalisation measure.

Very similar to stiffness, it can be defined as follows:

Gradient variance = V(x,y)∼Dtrain [∇θR (fθ(x), y)] . (2.3.3.4)

Notice that the gradient variance measure can be taken at any stage of training. The

empirical study of Jiang et al. [2020] suggested that the gradient variance at the end

of the first epoch, as well as after training, can be useful generalisation measures.

Jiang et al. [2020] further pointed out that the gradient variance at the end of

training corresponds to a special kind of flatness of the local minimum found.
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Neural Tangent Kernel Jacot et al. [2018] proved that under some assumptions,

the evolution of an artificial neural network function follows the kernel gradient

of a convex functional cost with respect to the Neural Tangent Kernel (NTK).

Furthermore, in the infinite-width limit, the kernel is constant during training. To

see this, we first recall the following observation:

Proposition 2.6 (“NTK at initialisation converges in probability to a deterministic

limiting kernel.” Proposition 1 in [Jacot et al., 2018]). Let the number of neurons in

layers of a network of depth L be n1, . . . , nL and n0 be the dimension of the input.

Let σ be a Lipschitz nonlinearity. Define a set of covariances Σ(L) recursively by:

Σ(1)(x, x′) = 1
n0
xTx′ + β2

Σ(l+1)(x, x′) = Ef∼N(0,Σ(l)) [σ (f (x))σ (f (x′))] + β2,
(2.3.3.5)

where β is an initialisation hyper-parameter.

Using Proposition 2.6, a key result can be proved to reveal insights about the

NTK convergence for infinite-width networks:

Theorem 2.7 (Theorem 1 in [Jacot et al., 2018]). “For a network of depth L,

the NTK Θ(L) converges to a deterministic limiting kernel, when the layer widths

n1, . . . , nL−1 →∞.”

Let IdnL be an nL × nL identity matrix. Let σ̇ be the derivative of the Lipschitz

nonlinearity σ. We define the following quantity over the expectation of a centred

Gaussian process f of covariance Σ(L):

Σ̇(l+1)(x, x′) = Ef∼N (0,Σ(l)) [σ̇ (f(x)) σ̇ (f(x′))] . (2.3.3.6)

Then we define a scalar kernel Θ(L)
∞ : Rn0 × Rn0 → R recursively:

Θ(1)
∞ (x, x′) = Σ(1)(x, x′)

Θ(L+1)
∞ (x, x′) = Θ(L)

∞ (x, x′)Σ̇(L+1)(x, x′) + Σ(L+1)(x, x′),
(2.3.3.7)

Finally, the kernel that the NTK converges to at the infinite-width limit is

Θ(L) → Θ(L)
∞ ⊗ IdnL . (2.3.3.8)
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A second key result from [Jacot et al., 2018] is that “NTK stays asymptotically

constant during training” with a more general definition of training.

Let F ⊆ Rn0 → RnL be the space of functions that can be implemented by the

network and F (L) : RP → F be the NN realisation function that maps network

weights to the function implemented by the network. P is the total number of

network weights. Consider a distribution on inputs pX ⊆ Rn0 , we first define a

bilinear form of functions 〈·, ·〉:

∀f, g ∈ F . 〈f, g〉pX = Ex∼pX
[
f (x)> g (x)

]
. (2.3.3.9)

The rule to update weights according to a training direction dt ∈ F is then

∂tθp(t) = 〈∂θpF (L) (θ (t)) , dt〉pX . (2.3.3.10)

Theorem 2.8 (Theorem 2 in [Jacot et al., 2018]). Assuming that the nonlinearity

σ is Lipschitz twice differentiable with bounded second derivative. If the inte-

gral
∫ T

0 ‖dt‖pXdt stays stochastically bounded, as network width goes to infinity

(n1, . . . , nL−1 →∞), we have, for t ∈ [0, T ], the time-dependent NTK converging:

Θ(L)(t)→ Θ(L)
∞ ⊗ IdnL . (2.3.3.11)

The neural network optimisation problem is highly non-convex, By observing the

results above, we can consider the neural network training problem in the functional

space instead of the network weight space. The convexity of the functional cost

might help us to understand the nature of neural network generalisation.

We need to note that explanations based on neural tangent kernel theories operate

in the NTK regime, which poses some restrictions to initialisation and consider

training in the infinite-width limit. It is less clear how well the NTK theories

generalise to outside this regime.
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The Lottery Ticket Hypothesis and linear mode connectivity Techniques

for pruning weights from neural networks without harming their performances [Le-

Cun et al., 1989, Hassibi and Stork, 1992, Han et al., 2015, Li et al., 2017] can

reduce the number of weights present by more than 90%. Based on this, Frankle

and Carbin [2019] articulated the Lottery Ticket Hypothesis (LTH):

Definition 2.9 (The Lottery Ticket Hypothesis). “Dense, randomly-initialized,

feed-forward networks contain subnetworks (winning tickets) that-when trained in

isolation-reach test accuracy comparable to the original network in a similar number

of iterations.”

The authors tested the LTH by running pruning algorithms on trained networks.

Then the remaining weights were set to exactly where they had been initialised

and subnetworks were re-trained. The authors found that the retrained subnet-

works exhibited similar or even better generalisation than the full networks. The

initialisation states of the remaining weights as well as the remaining subnetwork

structure constitute a winning lottery ticket. Preserving both of them are essential

for recovering the performance of the full network.

The authors also found that, interestingly, as pruning proceeds, the test accuracy first

increases and then decreases, forming an Occam’s Hill [Rasmussen and Ghahramani,

2000]: the full network has too much complexity that it overfits to the training data,

while the overly pruned network has too little expressiveness that it cannot describe

the data well. From an MDL perspective, a network that requires fewer bits of

information to describe should generalise better. However, a sparse network can

be hard to train from the start. Hence, the LTH provides an appealing theory for

generalisation: the dense network is easy to train and contains combinatorily many

lottery tickets. The optimisation algorithm finds a winning ticket that generalises

well while minimising the empirical risk.

It is worth noting that on small networks, the iterative magnitude pruning (IMP)

procedure can find matching (capable of being trained to the same performance of

the full network) networks at non-trivial sparsities. For larger networks, there is

little empirical evidence for the LTH [Liu et al., 2019, Gale et al., 2019].
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Definition 2.10 (Linear Mode Connectivity). Frankle et al. [2020] studied “whether

a neural network optimizes to the same, linearly connected minimum under different

samples of SGD noise.”

Consider two sets of network weights θ1 and θ2. We can find interpolations of the

network weights between them θinterp = αθ1 +(1−α)θ2, where α ∈ [0, 1]. The linear

interpolation instability, instability for short, is defined as maxαRemp (θinterp) −
Remp(θ1)+Remp(θ2)

2 . For a network trained for k epochs, we can subject it to two

different SGD noises and achieve two sets of final weights θ1 and θ2. If the instability

between θ1 and θ2 is below a certain threshold, we say that the two sets of weights

are linearly connected and the network is stable to SGD noise after k epochs.

With these notions, Frankle et al. [2020] showed that IMP subnetworks are only

matching when they are stable to SGD noise. This distinguishes the known cases

when IMP works and not works in the literature. For larger networks (e.g. ResNet-

50 on ImageNet), the sparse IMP subnetworks become stable to SGD noise early

in training, but not at initialisation. This generalises IMP to find subnetworks

early in training, broadening the scope of the LTH.

Further, with the distinction of whether the subnetworks are stable to SGD noise,

the training process is naturally divided into two stages. During these two different

training regimes, the behaviours of neural network weights are qualitatively different.

For example, training speed might be indicative of different properties in the two

stages. This motivates our study of the neural network training procedure focusing

on early and late training regimes individually.

2.3.4 Empirical Studies of Generalisation

We review some large-scale empirical studies on what measures are best for

predicting generalisation.

Complexity Measures A lower complexity measure is supposed to reflect a

simpler network and indicates a better generalisation performance. A lot of

complexities measures based on different aspects of neural networks have been
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proposed, with the aim of predicting generalisation. Jiang et al. [2020] categorised

the measures according to what they are based on, in the Related Work section

of their paper. We reiterate the basis of the complexities here:

• Theoretically motivated measures: PAC-Bayes [McAllester, 1999, Dzi-

ugaite and Roy, 2017, Neyshabur et al., 2017] based on the Probably Ap-

proximately Correct (PAC) theory and the Bayesian theory of learning; VC-

dimension [Vapnik and Chervonenkis, 2015] based on the expressivenss of

model families; Various norms of network weights [Neyshabur et al., 2015b,

Bartlett et al., 2017, Neyshabur et al., 2017].

• Empirically motivated measures: Sharpness [Hochreiter and Schmidhu-

ber, 1997, Keskar et al., 2017] based on loss surface smoothness; Fisher-

Rao measure [Liang et al., 2019]; Distance between final weights and initial

weights [Nagarajan and Kolter, 2019]; Path-norm [Neyshabur et al., 2015a] of

network weight trajectories.

• Optimisation-based measures: Training speed [Hardt et al., 2016, Wilson

et al., 2017, Lyle et al., 2020]; Magnitude of the gradient noise [Chaudhari

and Soatto, 2018, Smith and Le, 2018].

The methodology employed by Jiang et al. [2020] and later adopted and improved

by Dziugaite et al. [2020] was to carry out numerous experiments with a thorough

hyper-parameter sweep while monitoring the complexity measures mentioned. By

observing how the generalisation error and the complexity measure change when

a hyperparameter changes, we seek a causal connection between the complexity

measure and the generalisation error, independent of the hyper-parameter. Notice

that there are two possible mechanisms of changes to the hyper-parameters causing

changes in the generalisation error:

1. The hyper-parameter change causes the complexity measure monitored to

change. And the complexity measure changes causes the generalisation error

to change.
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2. The hyper-parameter change causes both the complexity measure and the

generalisation error to change. But the value of the complexity measure by

itself does not affect generalisation.

For each complexity measure monitored, it has explanatory power of the generalisa-

tion if 1 is the true mechanism, while it does not if 2 is the true mechanism. In

practice, due to the many variables of neural network training at play, it is likely that

a mixture of the two mechanisms affects generalisation for most complexity measures.

To eliminate the unwanted correlation between generalisation error and complexity

measure from mechanism 2, Jiang et al. [2020] carried out a conditional independence

test with the Inductive Causation algorithm [Verma and Pearl, 1990]. Dziugaite

et al. [2020], however, took a different approach, and ensured the soundness of

the causation found by requiring the complexity measure to be robust. This

means that how trustworthy a causal link between the complexity measure and

the generalisation error is weighted against how robust the link is in different

hyper-parameter combinations.

2.4 Training Speed and Generalisation

In the search for an adequate theory, a strong correlation between training speed

and generalisation was observed [Lyle et al., 2020, Ru et al., 2020]. Lyle et al.

[2020] showed that for linear models, the connection between training speed

and generalisation can be established via the quantity of marginal likelihood,

from a Bayesian perspective. By the Neural Tangent Kernel [Jacot et al., 2018],

the connection is also established for infinitely wide networks. For deep neural

networks, the Sum over Training Loss (SOTL) exhibits a predictive ability of

test cross entropy [Lyle et al., 2020] and subnetwork weights of better-performing

subnetworks [Ru et al., 2020]. Therefore for deep neural networks, although the

observation of the connection can be made, the theory behind it is far from clear.

The difficulties to use the same theory for deep neural networks include (1) the

training method in practice is not Bayesian (2) the marginal likelihood is not
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tractable. In this dissertation, however, we set out to find the reason for this

connection for deep neural networks.

Lyle et al. [2020] and Ru et al. [2020] observed that for neural networks, SOTL and

its variants are correlated with the generalisation performance, both early and late in

training. This was used in [Ru et al., 2020] to predict generalisation and help Neural

Architecture Search (NAS) before the network is done training. Investigating the

mechanism through which this metric correlates with the generalisation performance

is the goal of this dissertation. We will first introduce the theoretical background

for the connection between SOTL and marginal likelihood, and how it might be

viewed in the theories covered above. Then we will raise some hypotheses to

test in this dissertation.

2.4.1 Marginal Likelihood and Training Statistics

Consider the training dataset Dtrain and let D<i = {(xj , yj)}i−1
j=1. When doing

Bayesian model selection, we want to compute the posterior mass P (M | Dtrain)

for each model M . The marginal likelihood P (Dtrain |M) is used as the likelihood

function. It can be written as

P (Dtrain |M) =
∫
θ
P (Dtrain | θ)P (θ |M)dθ = EP (θ|M)P (Dtrain | θ) . (2.4.1.1)

This is Equation (1) in [Lyle et al., 2020].

When describing the model evidence P (Dtrain|M) for a single model, we omit

M and write P (Dtrain). For a model parameterised by θ, we have the following

form of the log marginal likelihood:

logP (Dtrain) = log
n∏
i=1

P (Di|D<i) =
n∑
i=1

log
[
EP (θ|D<i)P (Di|θ)

]
. (2.4.1.2)

From this equation, we see that a model which places more interim weight on

parameters that yield high likelihoods will have a larger marginal likelihood.

Now consider two quantities:

L̂ (Dtrain) =
n∑
i=1

1
k

k∑
j=1

logP (Di|θij).

L̂k (Dtrain) =
n∑
i=1

log 1
k

k∑
j=1

P (Di|θij).
(2.4.1.3)
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[Lyle et al., 2020] proved that both these quantities are estimators of a lower bound

of Bayesian models’ marginal likelihoods. Using the negative log likelihood as a loss

function, they arrived at the conclusion that lower bounds of the model’s marginal

likelihood can be estimated by training statistics. Also, in the infinite-sample,

infinite-training-time limit, the same rankings as the estimator are achieved by

gradient descent on a linear ensemble.

In [Ru et al., 2020], SOTL and its variants were clearly defined. Empirically, Ru et al.

[2020] showed that there is a strong correlation between SOTL and test accuracy

and devised the neural architecture search based on this correlation. We consider the

setting where we train a neural network parameterised by θ for T epochs. Denote

the function implemented by the network by fθ. Let there be B mini-batches in

one epoch. We denote the network weights before training on the b-th mini-batch

at the t-th epoch by θt,b. Let (Xb,yb) be the data and label on the b-th mini-batch.

We can write the Sum over Training Loss in the recent E epochs (SOTL-E) as:

SOTL-E =
T∑

t=T−E+1

[
1
B

B∑
b=1

R
(
fθt,b

(Xb) ,yb
)]
. (2.4.1.4)

When E = T , this recovers the original SOTL:

SOTL =
T∑
t=1

[
1
B

B∑
b=1

R
(
fθt,b

(Xb) ,yb
)]
. (2.4.1.5)

An additional training speed estimator based on the moving average of training

loss (TSE-EMA) can be written as:

TSE-EMA =
T∑
t=1

γt
[

1
B

B∑
b=1

R
(
fθt,b

(Xb) ,yb
)]
, (2.4.1.6)

where γ < 1 is a decay constant. This averaging method weighs losses at the earlier

stage of training more than those at the later stage.
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In the last chapter we saw the connections that could exist between training speed

and other entities in the literature that explain generalisation from different aspects.

We can also see how training speed can be connected to marginal likelihood and thus

explain generalisation from a Bayesian perspective for linear models and infinitely

wide models in [Lyle et al., 2020]. We wish to understand how training speed is

related to generalisation for neural networks in practice, the setting of which is often

non-Bayesian. In this chapter, we develop two hypotheses for the mechanism through

which training speed is connected with generalisation for deep neural networks:

namely, the robust flatness hypothesis and the gradient transfer hypothesis.

We use Figure 3.1 to express three possible relationships between training speed,

a quantity whose identity we wish to find, and generalisation in our hypothesised

mechanisms: Here the variable X denotes network flatness or the amount of gradient

23
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transfer, in each of our two hypotheses respectively. Notice that it is difficult to

distinguish between these two mechanisms, thus we only hypothesise about the

identity of variable X. Figure 3.1a denotes a mechanism in which the variable X

causes both training speed and generalisation; figure 3.1b denotes a mechanism in

which training speed causes variable X, which in turn causes generalisation; figure

3.1c denotes a mechanism in which a different unknown factor than X causes both

training speed and the variable X and X causes generalisation.

(a) (b)

(c)

Figure 3.1: Three possible mechanisms through which training speed is related to
generalisation. The node X denotes the factor we are hypothesising about. The node · · ·
in (c) stands for an unknown factor.

3.1 Two hypotheses

The Robust Flatness Hypothesis The Robust Flatness Hypothesis states that

the correlation between training speed and generalisation is due to network flatness,

i.e. X = flatness. This connection should be observed when the training is robust, i.e.

not diverged. We have seen in Subsection 2.3.2 how in various ways network flatness

can impact generalisation. There are also multiple ways in which network flatness

is connected with training speed: A larger learning rate might cause both a flatter

network minimum and a faster training speed (which corresponds to Figure 3.1c).

The correlation between flatness and training speed is mediated by the learning rate;

Huang et al. [2019] argued that the high dimensionality of network parameter space
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leads to a much larger volume of this space being associated with flatter minima

which in turn means that a faster training speed is implied since they are easier to

find (which corresponds to Figure 3.1a). This way, the correlation is immediate.

The Gradient Transfer Hypothesis The Gradient Transfer Hypothesis states

that the correlation between training speed and generalisation is due to gradient

transfer, i.e. X = the amount of gradient transfer. To define gradient transfer

informally, it is the quantity measuring how well the gradient update on one mini-

batch affects other mini-batches. Several formal definitions were introduced in

Subsection 2.3.3. From a first-order approximation, this quantity is proportional

to the dot product of the network gradients on two mini-batches. It is intuitively

straightforward to understand the connection between training speed and gradient

transfer: all other things being equal, more gradient transfer will lead to a faster

training speed. In the first epoch of training, when all training images are shown to

the model for the first time, different batches simulate the sampling of training and

test batches when generalisation is calculated. In later batches, because all data

points have been seen at least once, the simulation becomes approximated.

3.2 Method

In the practice of training deep neural networks, there are many practical techniques

aiming to enhance the performance of models trained. The mechanisms by which

they influence the generalisation of networks are known to different degrees. To

understand how they affect the connection between training speed and generalisation,

we conducted experiments to collect data for a large family of deep neural networks,

employing a subset of all possible training techniques. For example, we investigated

the effects of neural architecture choices (with/without convolutional layers, and

with/without batch normalizations), data augmentation, and the noise in the

stochastic gradient estimators. Using these results, we aim to find the conditions

under which at least one of the candidate mechanisms we hypothesised might explain

the connection between training speed and generalisation for deep neural networks.
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The objective of our experiments is to collect data from networks that are rep-

resentative of how deep learning models are used in practice. To this end, we

generated a large family of experiments, to cover popular network architectures,

optimisers, data augmentation schemes, etc. Namely, we wish to investigate the

effects of the following factors during network training:

1. Using data augmentation by image transformations;

2. Using Logit averaging [Nabarro et al., 2021];

3. Using Stochastic gradient Langevin dynamics [Welling and Teh, 2011];

4. Not using convolutional layers;

5. Using Batch Normalization [Ioffe and Szegedy, 2015].

3.2.1 Experimental setup

We chose the CIFAR10 [Krizhevsky et al., 2009] visual classification task. The

CIFAR10 dataset contains 60,000 RGB images of 32 × 32 pixels. The task is

to classify the images into one of ten categories. Of the 60,000 images, 50,000

are used for training and 10,000 are used for validation. See Figure 3.2 for 10

examples from each category.

We employed the following strategy to conduct controlled experiments: we first

trained multiple batch-norm-free networks with different widths, depths, and

learning rates, using SGD as the optimiser without data augmentation. The

network training is terminated once the loss on the training set reaches 0.01 or when

it has been trained for 400 epochs. This group of networks is our control group.

Then, we trained 5 experimental groups of networks corresponding to the 5 factors

we wish to investigate. For each experimental group, we used the same setting as the

control group, except for one hyperparameter whose effect we want to investigate.

Each group contains 45 experiments with different hyperparameter combinations.

We present the full results for the experiments in Appendix A. We start by showing

the average test accuracies for each group of the experiments, as primary results.
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Figure 3.2: Example images from the CIFAR10 dataset. Retrieved from the nutsml
documentation.

To determine how good a generalisation complexity measure is, Jiang et al. [2020]

used two evaluation criteria: conditional mutual information and Kendall’s rank-

correlation coefficient. We introduce them below and analyse the experimental

results using these two criteria as our main tools.

3.2.2 Sizes of neural architectures

We present the sizes of the neural architectures used in the experiments, in terms

of the number of parameters, in Table 3.1.

3.2.3 Important quantities

In this section, we list the complexity measures that we monitor in the experiments,

and explain why they are meaningful. Also, we introduce the quantities used in

the analysis of causal mechanisms and correlations.

https://maet3608.github.io/nuts-ml/tutorial/cifar10_example.html
https://maet3608.github.io/nuts-ml/tutorial/cifar10_example.html
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Architecture Base MLP ResNet
Depth=2, width=8 171,574 205,440 268,336
Depth=2, width=12 385,230 314,304 602,952
Depth=2, width=16 684,134 427,264 1,071,200
Depth=3, width=8 268,345 209,536 461,872
Depth=3, width=12 602,961 323,520 1,038,408
Depth=3, width=16 1,071,209 443,648 1,845,344
Depth=4, width=8 365,116 213,632 558,640
Depth=4, width=12 820,692 332,736 1,256,136
Depth=4, width=16 1,458,284 460,032 2,232,416

Table 3.1: Number of trainable parameters in each of the architectures used.

Training speed based measures There are a group of 3 entities that are

estimators of the training speed: SOTL, SOTL-E_50, and TSE-EMA. SOTL-

E_50 is the value of SOTL-E when E = 50. SOTL, SOTL-E, and TSE-EMA

are defined in equations 2.4.1.5, 2.4.1.4, and 2.4.1.6, respectively. These are the

indicators of training speed that we wish to study. SOTL-E_50 and TSE-EMA

are variants of SOTL, focusing on later and earlier stages. By observing their

values, we can investigate the importance of training speed at different stages

in predicting generalisation.

Sharpness-based measures We consider two measures related to sharpness:

PAC-Bayes sharpness (Equation 2.3.2.4) and value sensitivity. We experimented

with the other sharpness-based measures introduced in Subsection 2.3.2 in the

preliminary experiments and found that these two are the best at predicting

generalisation. Value sensitivity is an entity closely related to PAC-Bayes sharpness.

Concretely, we define it as:

Value sensitivity = Eθ′∼N (θ,0.01I) [Remp (θ′, Dtrain)] . (3.2.3.1)

Gradient variance based measures We monitor the gradient variance measure

defined by Equation 2.3.3.4, at two points in training: when the neural network
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has seen all the training data once (at the end of epoch 1), and when the network

has finished training. We denote these two quantities by “Initial gradient variance”

and “Final gradient variance” respectively.

Average test accuracy To give brief indications of how well each group of

experiments would perform in reality, we calculate the average test accuracies

across each group.

Normalised Conditional Mutual Information (NCMI) We represent two

possible sets of causal relations between the network parameters θ, the complexity

measure µ, and the generalisation error g in Figure 3.3. We wish to have a criterion

that tells us how good a generalisation measure is by indicating the relative likelihood

of the mechanism in Figure 3.3a to that of Figure 3.3b.

(a) (b)

Figure 3.3: (a) The complexity measure µ can perfectly explain the generalisation error.
(b) The generalisation error g might be explained by some hidden factor and cannot be
explained by µ.

Inspired by the Inductive Causation (IC) Algorithm [Verma and Pearl, 1990],

Jiang et al. [2020] perform a conditional independence test for each complexity

measure. They do so by reading the mutual information between µ and g,

conditioned on a set of hyperparameters. In our analysis, we place the condition

on a single hyperparameter out of the three that we vary for each group: learning

rate, network depth, and network width. We present the weighted average of
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the conditional mutual information, as well as its minimum, across different

hyperparameter combinations.

Concretely, let h be a hyperparameter, S be a value of h, and US be the set of

experiments whose hyperparameter h has value S. Let θ : Θ be the parameters

of the network, µ : Θ → R be a complexity measure function and g : Θ → R be

the generalisation error function. We can then define Vµ :≡ sign(µ(θ1) − µ(θ2)) :

Θ1×Θ2 → {−1, 1} and Vg :≡ sign(g(θ1)−g(θ2)) : Θ1×Θ2 → {−1, 1}. Now, we have

I(µ, g | h) =
∑
S

∑
US

p(US)
∑

Vµ∈±1

∑
Vg∈±1

p(Vµ, Pg | US) log
(

p(Vµ, Pg | US)
p(Vµ | US)p(Pg | US)

)
.

(3.2.3.2)

We call this quantity the conditional mutual information (CMI). The higher the

CMI, the more likely that there exists an edge between µ and g, under the

hyperparameter h.

Since we wish to arrive at a criterion with a fixed range, we can first calculate

the conditional entropy of generalisation:

H(Vg | h) = −
∑
S

∑
US

p(US)
∑

Vg∈±1
p(Vg | US) log p(Vg | US), (3.2.3.3)

and use it to normalise the conditional mutual information:

Î(µ, g | h) = I(µ, g | h)
H(Vg | h) . (3.2.3.4)

We denote the above entity by Normalised Conditional Mututal Information (NCMI).

According to the IC algorithm, an edge is kept if there is no hyperparameter h

such that the two nodes are independent. We calculate the minimum value of

the normalised conditional mutual information across hyperparameters for each

group of experiments:

K(µ) = min
h
Î(µ, g | h). (3.2.3.5)

In addition, we also calculate the average conditional mutual information, de-

noted by K̄(µ):

K̄(µ) =
∑
h

p(h)Î(µ, g | h). (3.2.3.6)
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Kendall’s rank-correlation coefficient Ideally, for each of the generalisation

complexity measures, we wish that they can be positively correlated with the

generalisation error (i.e. the smaller the value of the complexity measure, the lower

the generalisation error). However, the NCMI introduced in the last part does

not tell us anything about the positivity of the correlation. Hence, we introduce

Kendall’s Rank-Correlation Coefficient [Kendall, 1938]. It uses ranking to evaluate

the quality of complexity measures.

Concretely, let U be the set of all experiments in the group, θ1, θ2, . . . , θ|U | be the

network parameters of each of the experiments, µ : Θ → R be the complexity

measure function, and g : Θ→ R be the generalisation error function. Kendall’s

rank coefficient is defined as:

τ(U ;µ, g) :≡ 1
| U | (| U | −1)

∑
θ1∈U

∑
θ2∈U\θ1

sign (µ(θ1)− µ(θ2)) sign (g(θ1)− g(θ2)) .

(3.2.3.7)

It can easily be verified that Kendall’s rank coefficient falls into the range of [−1, 1].

When the ranking of the complexity measure is the same as that of the generalisation

error, the coefficient is 1. When the ranking of the complexity measure is the reverse

of the generalisation error, the coefficient is -1.
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Below we present the detailed setup of each group of experiments, as well as results.

We analyse the results with the central question of whether the condition presented

allows for one of the hypotheses to hold.

4.1 The Control Group

Here we specify the experimental setup for our control group. We use the architecture

with the SkipInit initialisation as described by De and Smith [2020]. We refer to

this architecture as the “base architecture” since it is used in the control group

experiments. The base architecture is similar to Residual Networks [He et al., 2016],

except that it doesn’t use batch normalization [Ioffe and Szegedy, 2015].

32
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(a) The Residual block (b) The SkipInit block

Figure 4.1: Comparison between the Residual block and the SkipInit block. Notice
that in the SkipInit block, the position of convolution and activation is also swapped, as
specified in the paper of De and Smith [2020].

The SkipInit block and architecture In Figure 4.1 we illustrate the Residual

block and a SkipInit block. The main difference is that in the SkipInit block there is

no Batch Normalization layer. Instead, it uses a learnable multiplicative parameter

α which is initialised to be zero. This is because we wish to study the effects of

Batch Normalization explicitly, which changes the training dynamics significantly,

in one of our experimental groups. Hence in the control group, we deliberately

use a Batch-Normalization-free architecture.

De and Smith [2020] found that the base architecture using SkipInit can achieve

comparable performances with Residual Networks, under some assumptions on the

training regime. Since we wish to study the effect of batch normalizaiton explicitly,

we need to reserve architectures with batch normalization for an experimental group

and use the base architecture for our control group.

In the control group of experiments, we conduct a grid search over the following

hyperparameters: learning rates, network depths, and network widths. We use 5

different learning rates [0.001, 0.0016, 0.003, 0.006, 0.01], 3 network widths [8, 12,

16], and 3 network depths [2, 3, 4]. Each network has 3 stages. For a network

with width w and depth d, each stage consists of d SkipInit blocks. The three

stages have 2 ∗ w, 4 ∗ w, 4 ∗ w channels respectively.

We use the SGD optimiser to train our networks on the CIFAR10 [Krizhevsky et al.,

2009] dataset. The loss criterion we use is cross entropy.
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We present some useful entities for the control group in Table 4.1.

Control group Average test accuracy: 71.1 %
µ K(µ) K̄(µ) τ (U ;µ, g) τ (U ;µ,TSE-EMA)

SOTL 0.130 0.325 0.640 0.949

SOTL-E_50 0.015 0.050 -0.228 -0.125
TSE-EMA 0.123 0.310 0.610 1.00

PAC-Bayes sharpness 0.071 0.266 0.392 0.642
Value sensitivity 0.037 0.262 0.400 0.644

Initial gradient variance 0.063 0.181 -0.436 -0.737
Final gradient variance 0.010 0.030 0.166 0.071

Table 4.1: The important analytical quantities mentioned in Section 3.2.3 of the
complexity measures considered in the control group. Bold values indicate the largest
value out of the complexity measures by magnitude. U is the set of all experiments in the
group and g is the generalisation error.

Training speed estimators predict generalisation well We notice that the

SOTL measure has the highest values for K (0.130) and K̄ (0.325). It is also

the most correlated measure with the generalisation error (τ = 0.640) out of

the measures we consider. The measure TSE-EMA closely follows in the same

three entities, taking the values of 0.123, 0.310, and 0.610 respectively. SOTL

and TSE-EMA are also highly correlated themselves-the τ value between them

is 0.949. This tells us that the early training speed is highly correlated with the

training speed of the entire training process.

The SOTL-E_50 measure is negatively correlated with the generalisation error.

This means that when the sum of the training losses over the last 50 epochs is larger,

the generalisation error is likely to be smaller. This also supports the theory that the

faster training speed is an indicator of good generalisation: we terminate training

when the cross entropy reaches 0.01, therefore a larger SOTL-E_50 indicates a

faster-declining loss in the last 50 epochs and hence faster training speed.

The flatness-based measures (PAC-Bayes sharpness and value sensitivity) behave

quite similarly. They both have moderate values of K and K̄: 0.071 and 0.266
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for PAC-Bayes sharpness, 0.037 and 0.262 for value sensitivity. They are also

positively correlated with the generalisation error and TSE-EMA, having very

similar coefficients in both correlations.

Initial gradient variance behaves differently when different learning rates

are used The initial gradient variance is the most negatively correlated measure

with the generalisation error, having a correlation coefficient of -0.436, out of the

seven considered. This suggests that a larger gradient variance in the early training

is likely to indicate a smaller generalisation error of the final network. It is also

the most negatively correlated measure with TSE-EMA, the value of τ being -

0.737. This tells us that faster training speed in the earlier stage is correlated

with big gradient variance. Since the training speed is very closely correlated with

the learning rate, we want to investigate whether this dependence still exists if

conditioned on the learning rate hyperparameter.

To this end, we first calculated the correlation coefficient between the initial gradient

variance and the learning rate in the group, which is 0.604. This suggests that the

larger the learning rate, the larger the initial gradient variance. Then, we calculated

the correlation coefficients between the generalisation error and the initial gradient

variance, as well as between TSE-EMA and the initial gradient variance. We present

the coefficients with different learning rate groups in Table 4.2.

Control group µ = initial gradient variance
Learning rate τ (U ;µ, g) τ (U ;µ,TSE-EMA)

0.001 0.167 -0.333
0.0016 0.111 -0.388
0.003 0.111 -0.388
0.006 -0.388 -0.611
0.01 -0.611 -0.833

Table 4.2: The correlation coefficients between the initial gradient variance and the
generalisation error, as well as between the initial gradient variance and TSE-EMA in the
control group.
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It is easy to see that there is the trend that when the learning rate increases, the

correlation between initial gradient variance becomes more negative, as does the

correlation between initial gradient variance and TSE-EMA. The difference for

different learning rates is large: the coefficient between initial gradient variance

and generalisation error changes from 0.167 for the learning rate 0.001 to -0.611

for the learning rate 0.01. The coefficient between initial gradient variance and

TSE-EMA changes from -0.333 to -0.833. This suggests that for all learning rates

considered, greater initial gradient variance is correlated with faster training speed.

For smaller learning rates, greater initial gradient variance is correlated with worse

generalisation, while for larger ones, it is correlated with better generalisation.

The final gradient variance as a measure has small and even negligible values in the

quantities present in the table.

This section presented the results from the control group. Key takeaways are:

• Training speed estimators can predict generalisation well.

• Flatness and gradient transfer measures are correlated with generalisa-
tion as well as TSE-EMA.

• Initial gradient variance has more negative correlations with generalisa-
tion and TSE-EMA as the learning rate increases.

4.2 The Experimental Groups

We now study the relationship between complexity measures and generalisation

when we make different design choices described in the control group.

4.2.1 Data transformation

Data augmentation is one of the most popular ways to increase the performance of

neural networks for visual tasks. We want to investigate its effects on generalisation.

Here we explain in detail the data augmentation scheme used and how logit averaging

is applied in our experimental groups.
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Data augmentation by invariant transformation In the data augmentation

experimental group, for each input image, we perform a random crop of size 32 × 32

pixels, with a padding of 4 pixels. Then with a probability of 0.5, the cropped image

is horizontally flipped. The basis for this transformation is that visual classification

should be invariant to these transformations, i.e. an image slightly cropped or

flipped horizontally should have the same label as the original image. The resulting

image will then be used for network training.

From a Bayesian perspective, however, this procedure is likely to result in an

overconfident network. This is because we treat each of the transformed images as

an independent image, while they are not since the ground truth of each transformed

image is assumed to be identical to the original one. Because we assumed more

training data than we really have with this augmentation, the posterior distribution

will be influenced by the likelihood more than it should. This is particularly

troublesome from the Bayesian perspective: we assume that the data is fixed, while

transformation can create infinitely many data points potentially. In the infinite

data-point case, the model will ignore the prior completely.

Logit averaging Nabarro et al. [2021] pointed out that one way to circumvent this

is to regard the transformed images as drawn out of a distribution parameterised by

the original image and the loss as the expectation over the distribution. Concretely,

let x be the original image, y be the true target, θ be the network parameters, fθ
be the function that the network implements, R be the original loss, and Tx be the

distribution of transformed images. Let the output of the network be unnormalised,

i.e. passing the network output through a softmax function gives the output

probabilities. These outputs are also called logits. We can write the modified loss as:

Rmodified (x, y; θ) = R
(
Ex′∼Tx(·)[fθ(x′)], y

)
. (4.2.1.1)

Then, we can think of data augmentation by transformation as a new way of defining

the likelihood function, by taking the expectation over a fixed distribution.

In practice, this modified loss can be estimated by logit averaging. The idea of

logit averaging [Nabarro et al., 2021, van der Wilk et al., 2018, Dao et al., 2019] is
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that, for each data point, we perform multiple transformations. Then the multiple

transformed images are fed into the neural network, resulting in multiple logit

vectors. The logit vectors are then averaged over each data point and loss is

calculated with the averaged logit vector and the target.

A Monte Carlo estimator is the result of logit averaging:

R̂modified(x, y; θ) = − log softmaxy[
K∑
i=1

fθ(xi)], (4.2.1.2)

where x1, x2, . . . , xK ∼ Tx(·). To put the idea into a computational context, we

present the pytorch-like pseudocode in Algorithm 1.

Algorithm 1: Logit averaging algorithm
Input: Dataloader D, neural network N , duplication factor K
for data d, target t in D do

// Tensor d has shape batch_size× 3× 32× 32
Transform the data
d′ ← duplicate_and_transform(d, duplicates = K);

// Tensor d′ has shape (K ∗ batch_size)× 3× 32× 32
Logits l← N .forward(d′);
// Tensor l has shape (K ∗ batch_size)× 10
Averaged logits l′ ← torch.mean(l.view(K, batch_size, 10),dim=1);
Loss L← criterion(l′, t);
L.backward();

end

In our experiments, we used the same transformations as the data augmentation

experiments, and a duplication factor of K = 4. At both training and test time,

losses were calculated by doing transformation and logit averaging (except no

backpropagation at test time). The generalisation gap and related complexity

measures were also calculated based on this loss.

To train a model for B epochs with logit averaging, the computational budget is K

times that of training the same model without logit averaging. Because the training

loss in the logit averaging experiments decreases much more slowly, we change its

maximum number of epochs to 250, which uses the same compute as 1000 epochs

without logit averaging (compared to 400). Also, the cross entropy milestone is



4. Results and Analysis 39

changed to 0.25 (from 0.01). This change can be justified as it has similar effects

on the test accuracies as the straightforward data augmentation experiments.

We compare and contrast the results from these two experimental groups, as well

as those from the control group, in Table 4.3.

Data augmentation improves flatness and generalisation Comparing the

data augmentation group with the control group, we found that the average test

accuracy increases by 13.9%, from 71.1% to 85.0%. Additionally, the correlation

coefficients of complexity measures with the generalisation error are much smaller.

Notably, the SOTL measure, having a correlation coefficient of 0.640 in the control

group, becomes negatively correlated with the generalisation error in the data

augmentation group. The TSE-EMA measure is strongly correlated with the

generalisation error in the control group, with a coefficient of 0.610, but the

coefficient becomes 0.046 in the data augmentation group. The only complexity

measure that increases in the correlation coefficient is the initial gradient variance

measure, from -0.436 to 0.073.

In terms of the correlation with TSE-EMA, a noticeable change happens for the

final gradient variance measure. Its correlation coefficient increases from 0.071 to

0.768, i.e. the final gradient variance changes from nearly uncorrelated to strongly

positively correlated with TSE-EMA.

To find a potential reason for the improvement in performance, we compare the

flatness and the generalisation error of pairs of experiments in the two groups

whose only hyperparameter difference is whether data augmentation is applied. The

results of experiments in the data augmentation group compared to the control

group are presented in Table 4.4.

We can see clearly that in all experiments, employing data augmentation improves

both the flatness of the minima found and the generalisation performance. This

tells us that it’s possible that the improvement in the performance of the data

augmentation group can be explained by flatness changes.
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Control group Average test accuracy: 71.1 %
µ K(µ) K̄(µ) τ (U ;µ, g) τ (U ;µ,TSE-EMA)

SOTL 0.130 0.325 0.640 0.949

SOTL-E_50 0.015 0.050 -0.228 -0.125
TSE-EMA 0.123 0.310 0.610 1.00

PAC-Bayes sharpness 0.071 0.266 0.392 0.642
Value sensitivity 0.037 0.262 0.400 0.644

Initial gradient variance 0.063 0.181 -0.436 -0.737
Final gradient variance 0.010 0.030 0.166 0.071

Data augmentation group Average test accuracy: 85.0 %
µ K(µ) K̄(µ) τ (U ;µ, g) τ (U ;µ,TSE-EMA)

SOTL 0.116 0.222 -0.097 0.820

SOTL-E_50 0.032 0.140 -0.327 0.549
TSE-EMA 0.134 0.182 0.046 1.00

PAC-Bayes sharpness 0.051 0.115 0.172 0.717
Value sensitivity 0.146 0.173 0.202 0.756

Initial gradient variance 0.097 0.140 0.073 -0.687
Final gradient variance 0.092 0.125 0.032 0.768
Logit averaging group Average test accuracy: 82.6 %

µ K(µ) K̄(µ) τ (U ;µ, g) τ (U ;µ,TSE-EMA)
SOTL 0.035 0.154 0.414 0.907

SOTL-E_50 0.047 0.138 -0.354 -0.626
TSE-EMA 0.029 0.150 0.428 1.00

PAC-Bayes sharpness 0.038 0.156 0.473 0.651
Value sensitivity 0.031 0.138 0.469 0.644

Initial gradient variance 0.023 0.112 -0.339 -0.685
Final gradient variance 0.027 0.152 0.469 0.721

Table 4.3: The important analytical quantities mentioned in Section 3.2.3 of the
complexity measures considered in the three groups of experiments. Bold values indicate
the largest value out of the complexity measures in the group by magnitude.

Training speed estimators need rethinking for data transformation Ide-

ally, we should wish that the complexity measures be positively correlated with
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Data augmentation has Data augmentation has
better Generalisation worse generalisation

Higher sharpness 0 0
Lower sharpness 45 0

Table 4.4: The sharpness and generalisation compared for the data augmentation group
and the control group. Entries are the number of experiment pairs fitting the description.

the generalisation error, and for a mechanism to uphold, we should wish that a

representative measure of the mechanism to correlate with TSE-EMA. These training

speed estimators are either barely positively correlated, or negatively correlated

with the generalisation error. So, not using these data transformations is a necessary

condition for analysing our hypotheses. However, this is not necessarily the fault of

data transformation itself, it could be that the way we calculate the training loss

becomes unsuitable when data transformation is present: the training losses are

calculated with the transformed images while the generalisation error is calculated

with original images. The distribution of the transformed images is shifted from the

distribution of the original CIFAR10 images while we use the same loss to indicate

the training speed. This discrepancy could make the training speed estimators

unsuitable as generalisation measures. To verify that the training speed estimators

can work when data transformation is present, we look at the logit averaging group.

Logit averaging and modified loss restores training speed estimators as

generalisation measures The average test accuracy increases by 11.5%, from

71.1% in the control group, to 82.6% in the logit averaging group. This is a large

increase and makes its effect similar to that brought by the data transformations in

the previous group. This validates our change of training termination criteria: the

logit averaging applied can represent a computationally feasible practice with

good performance.

We find that doing logit averaging and calculating the loss in this way makes the

training speed estimators behave as we expect: SOTL has a correlation coefficient

of 0.414 with the generalisation error, SOTL-E_50 -0.354, and TSE-EMA 0.428.
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This trend is consistent with that found in the control group experiment (with

no data transformation).

4.2.2 Variance of the stochastic gradients

As we introduced in Subsection 2.3.1, the SGD optimiser update follows the

stochastic gradient. The network weights are updated according to Equation

2.3.1.2. The variance in the gradient purely comes from the stochasticity of the

mini-batches. We can investigate the effect of the gradient variance by explicitly

adding Gaussian noise to the gradient estimator.

Stochastic Gradient Langevin Dynamics Stochastic Gradient Langevin Dy-

namics [Welling and Teh, 2011] is a process during which, noise is added to the

gradient updates. Specifically, we can write the change in the network parameters

for one step of SGD is:

∆θSGD = η · ∇θRemp

(
θ, {xj, yj}i+n−1

j=i

)
. (4.2.2.1)

But for one step of SGLD, the change in parameters is:

∆θSGLD = η · ∇θRemp

(
θ, {xj, yj}i+n−1

j=i

)
+ ε, (4.2.2.2)

where ε ∼ N (0, 2η). Asymptotically, SGLD allows sampling from the posterior

distribution of the network weights. Compared with the SGD update rule, we can

easily see that because ε is sampled independently, we have

V [∆θSGLD] = V [∆θSGD] +V [ε] (4.2.2.3)

= V [∆θSGD] + 2η. (4.2.2.4)

This is to say, the variance in the SGLD gradient update is the sum of the

variance in the SGD update and the variance of the Gaussian noise, which is

proportional to the learning rate.

To investigate the effects of SGLD, we conduct experiments identical to those in

the control group, except with SGLD optimisers instead of SGD optimisers. We
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used the PyTorch [Paszke et al., 2019] implementation of the SGLD optimisers

with default parameters except for learning rates. In practice, there are issues with

preconditioning, pseudo batching, burning-in, and diagonal bias for the stability

and the sampling quality of the optimiser, which we do not go into detail about.

In our experiments, we used the following parameters: the dataset size is 50000,

the precondition decay rate is 0.95, the number of pseudo batches is 1, the number

of burn-in steps is 3000, and the diagonal bias is 1 × 10−8.

We present the experimental results for the SGLD group, as well as the control

group, in Table 4.5.

Control group Average test accuracy: 71.1 %
µ K(µ) K̄(µ) τ (U ;µ, g) τ (U ;µ,TSE-EMA)

SOTL 0.130 0.325 0.640 0.949

SOTL-E_50 0.015 0.050 -0.228 -0.125
TSE-EMA 0.123 0.310 0.610 1.00

PAC-Bayes sharpness 0.071 0.266 0.392 0.642
Value sensitivity 0.037 0.262 0.400 0.644

Initial gradient variance 0.063 0.181 -0.436 -0.737
Final gradient variance 0.010 0.030 0.166 0.071

SGLD group Average test accuracy: 78.4 %
µ K(µ) K̄(µ) τ (U ;µ, g) τ (U ;µ,TSE-EMA)

SOTL 0.044 0.140 0.236 0.669

SOTL-E_50 0.041 0.116 -0.040 0.246
TSE-EMA 0.171 0.251 0.475 1.00

PAC-Bayes sharpness 0.015 0.048 -0.253 -0.022
Value sensitivity 0.041 0.060 -0.154 -0.085

Initial gradient variance 0.057 0.088 -0.048 0.251
Final gradient variance 0.026 0.032 -0.176 0.192

Table 4.5: The important analytical quantities mentioned in Section 3.2.3 of the
complexity measures considered in the three groups of experiments. Bold values indicate
the largest value out of the complexity measures in the group by magnitude.

The average test accuracy increases by 7.3%, from 71.1% in the control group to
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78.4% in the SGLD group. This suggests that in practice, adding Gaussian noise to

the stochastic gradient update helps regularise the neural network effectively, in

the absence of data augmentation. From the Bayesian perspective, approximately

sampling from the posterior of the neural network weights (exact sampling requires

infinite training iterations) increases the performance of the examined neural models.

TSE-EMA retains predictive power while other training speed estima-

tors fail We can observe that for the SOTL measure, the NCMI values and

the correlation coefficient with the generalisation error all decrease in the SGLD

group. Its minimal NCMI plunges from 0.130 to 0.044, average NCMI drops from

0.325 to 0.116, and the correlation coefficient changes from 0.640 to 0.236. For the

SOTL-E_50 measure, the correlation with generalisation error also becomes weaker

for the SGLD group: the correlation coefficient magnitude changes from 0.228 to

0.004, i.e. the correlation is negligible. However, the TSE-EMA measure, out of all

three training speed estimators, increased in minimal NCMI from 0.123 to 0.171.

Sharpness-based measures fail when SGLD is applied Noticeably, the

sharpness-based measures (PAC-Bayes sharpness and value sensitivity) become

negatively correlated with the generalisation error. The correlation coefficient of

PAC-Bayes sharpness drops from 0.392 to -0.253, and that of value sensitivity drops

from 0.400 to -0.154. This means that sharpness measures fail when the variance of

stochastic gradient updates is increased by applying SGLD. Their correlations with

TSE-EMA, the effective training speed estimator, are also very weak (correlation

coefficients being -0.022 and -0.085).

To confirm that the intervention applied to the variance of the stochastic gradient

updates makes the sharpness measures useless, we present Table 4.6. For each

of the 45 experiments in the SGLD group, we find the experiment in the control

group with the same hyperparameters, apart from the optimiser used, and compare

their generalisation and flatness.

This table shows that for all 45 pairs of experiments, the one trained with SGLD

has better generalisation performance. However, the change in the sharpness of the
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Better generalisation Worse generalisation
Higher sharpness 24 0
Lower sharpness 21 0

Table 4.6: The sharpness and generalisation compared for the SGLD group and the
control group.

final network is largely random. Therefore, we can conclude that not only does this

intervention remove the connection between network flatness (in the PAC-Bayes

and value sensitivity sense) and generalisation error, but also the intervention does

not bias the flatness in one way or another.

It is clear that training speed’s predictive power of generalisation is not only due

to its connection with flatness, otherwise it won’t exhibit such a good predictive

performance in the SGLD group.

4.2.3 Ablation of convolutional layers

Convolutional networks [LeCun et al., 1995] have become a necessary component in

the models applied to the computer vision domain. The weight-sharing convolutional

layers that embody the translational equivariance property in many visual problems

are a very effective way of presenting inductive bias in neural networks. As part of

our neural architecture investigation, we look at the networks without convolutional

layers, namely, multi-layer perceptrons.

The multi-layer perceptron architecture Multi-Layer Perceptrons (MLPs)

are one of the earliest neural network architectures. Here we briefly introduce

what functions an MLP can implement. Let there be an L-layer MLP used for

classification with its weights and bias at layer l being θl and bl, the activation

function used be σ, and the input be x. We can inductively define the function
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that the network implements:

fθ1(x) = σ(θ1x+ b1); (4.2.3.1)

fθl(x) = σ(θlfθl−1(x)) + bl), for l ≥ 1; (4.2.3.2)

fθ(x) = fθL(x), (4.2.3.3)

where fθ(x) is the output logits of the network. Passing the logits through a softmax

layer and we get the output probabilities for input x. The biggest difference between

MLPs and the base architecture we used in the control group is that it doesn’t

have convolutional layers [LeCun et al., 1995].

To investigate the effects of not having convolutional layers in the network ar-

chitecture, we repeat the experiments of the control group, except with MLPs

as the network architecture. We present the important quantities of the MLP

group and the control group in Table 4.7.

The lack of inductive bias makes generalisation very poor in MLPs The

table suggests that the MLP group only achieves 47.4% test accuracy on average.

This is not surprising for a neural architecture without a convolutional structure.

Although there are creative ways to combine MLPs to achieve better results for

CIFAR10 [Tolstikhin et al., 2021], we believe these experiments can represent the

typical performance of MLPs on visual tasks. There could be two possible reasons

for this: (1) MLPs are very inexpressive architecture which cannot effectively solve

the visual classification problem (2) MLPs do not have the implicit translational

equivariance inductive bias and generalise poorly. One observable consequence

for these two reasons is that if (1) were true, the training accuracy would also be

very low for MLPs, which would not be the case if (2) were true. Observing the

experimental data, we found that in the MLP group, the worst training accuracy

at the end of training is > 90%. Therefore we conclude that MLPs are expressive

enough to overfit visual classification datasets like CIFAR10 but generalise poorly.
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Control group Average test accuracy: 71.1 %
µ K(µ) K̄(µ) τ (U ;µ, g) τ (U ;µ,TSE-EMA)

SOTL 0.130 0.325 0.640 0.949

SOTL-E_50 0.015 0.050 -0.228 -0.125
TSE-EMA 0.123 0.310 0.610 1.00

PAC-Bayes sharpness 0.071 0.266 0.392 0.642
Value sensitivity 0.037 0.262 0.400 0.644

Initial gradient variance 0.063 0.181 -0.436 -0.737
Final gradient variance 0.010 0.030 0.166 0.071

MLP group Average test accuracy: 47.4 %
µ K(µ) K̄(µ) τ (U ;µ, g) τ (U ;µ,TSE-EMA)

SOTL 0.012 0.155 0.152 0.651
SOTL-E_50 0.123 0.153 -0.343 0.063
TSE-EMA 0.034 0.133 0.210 1.00

PAC-Bayes sharpness 0.024 0.163 0.186 0.677
Value sensitivity 0.042 0.189 0.220 0.715

Initial gradient variance 0.013 0.082 -0.111 -0.663
Final gradient variance 0.091 0.113 -0.149 0.305

Table 4.7: The important analytical quantities mentioned in Section 3.2.3 of the
complexity measures considered in the three groups of experiments. Bold values indicate
the largest value out of the complexity measures in the group by magnitude.

Most complexity measures are bad generalisation measures with MLPs

We can observe from the table that most complexity measures monitored have

low minimal NCMI (< 0.1) with the generalisation error, apart from SOTL-E_50,

which has a K value of 0.123. This suggests that the probability that a complexity

measure causes generalisation is low for most. The relatively higher NCMI from

SOTL-E_50 suggests that the training speed near the end of the training is

indicative of the generalisation error.

For memorisation-prone architectures like MLPs that overfit severely, training speed

loses its predictive power of generalisation. The connection between training speed

and generalisation benefits from strong inductive biases in the neural architecture.
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4.2.4 Batch normalization

Batch Normalization [Ioffe and Szegedy, 2015] is a technique frequently used in

training deep neural networks. By reducing internal covariate shift, it accelerates

training deep neural networks. As a result, it allows for larger learning rates and more

network layers to be used. As we have shown in Figure 4.1, the difference between

the Residual block and the SkipInit block is mainly the use of batch normalization.

To investigate the effects of batch normalization, we employ networks using the

Residual blocks, namely, ResNets [He et al., 2016].

The ResNet neural architecture As we briefly introduced in Figure 4.1, the

residual block in a network is a structure that adds the original input and the

input after processing together, instead of simply processing it. As a result, this

block allows layers to be bypassed if they are not beneficial. It also avoids the

vanishing gradient problem by this addition.

To investigate the effects of batch normalization, we conducted experiments where

the neural architecture is the same as the base architecture, but with SkipInit

blocks substituted for residual blocks. We present the important quantities of this

ResNet group together with the control group in Table 4.8.

We find that the ResNet group has the same average test accuracy: 71.1%. This

validates that our choice of the base architecture does indeed match the performance

of ResNets used in practice.

Training speed estimators perform well in predicting generalisation for

ResNets The training speed estimators SOTL and TSE-EMA have better abilities

to predict generalisation in the ResNet group than in the control group: The value

of K increases from 0.130 to 0.141 for SOTL, and from 0.123 to 0.141 for TSE-EMA;

the correlation coefficient with the generalisation error increases from 0.640 to

0.696 for SOTL, and from 0.610 to 0.711 for TSE-EMA. We can see that when

a popular neural architecture is used for a visual classification task, the training

speed estimators have a consistently strong performance in predicting generalisation.
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Control group Average test accuracy: 71.1 %
µ K(µ) K̄(µ) τ (U ;µ, g) τ (U ;µ,TSE-EMA)

SOTL 0.130 0.325 0.640 0.949

SOTL-E_50 0.015 0.050 -0.228 -0.125
TSE-EMA 0.123 0.310 0.610 1.00

PAC-Bayes sharpness 0.071 0.266 0.392 0.642
Value sensitivity 0.037 0.262 0.400 0.644

Initial gradient variance 0.063 0.181 -0.436 -0.737
Final gradient variance 0.010 0.030 0.166 0.071

ResNet group Average test accuracy: 71.1 %
µ K(µ) K̄(µ) τ (U ;µ, g) τ (U ;µ,TSE-EMA)

SOTL 0.141 0.381 0.696 0.985

SOTL-E_50 0.021 0.077 -0.101 -0.240
TSE-EMA 0.141 0.392 0.711 1.00

PAC-Bayes sharpness 0.032 0.333 0.596 0.358
Value sensitivity 0.043 0.266 0.368 0.111

Initial gradient variance 0.013 0.019 -0.101 -0.362
Final gradient variance 0.002 0.069 0.085 -0.111

Table 4.8: The important analytical quantities mentioned in Section 3.2.3 of the
complexity measures considered in the three groups of experiments. Bold values indicate
the largest value out of the complexity measures in the group by magnitude.

Moreover, when the standard ResNet structure is used, their predictive power is

even stronger. Because the standard ResNet architecture uses Batch Normalization,

we conclude that the training speed estimators are robust against the presence

of Batch Normalization layers in networks.

Sharpness-based measures have weaker correlations with training speed

In the control group, the two sharpness-based measures, PAC-Bayes sharpness and

value sensitivity, have relatively high correlation coefficients with the training speed

estimator TSE-EMA (0.642 and 0.644 respectively). However, in the ResNet group,

they decrease to 0.358 and 0.111 respectively. Therefore we may think that although

the predictive power of training speed estimators is stronger in the ResNet group,
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it is likely not entirely due to the flatness mechanism.

This section presented the results from the experimental groups. Key
takeaways are:

• Training speed estimators, especially TSE-EMA, can consistently predict
generalisation well.

• Flatness measures positively correlate with TSE-EMA when logit
averaging is applied and when Batch Normalization is present. Its
correlation with TSE-EMA is negative but negligible.

• Gradient transfer measures correlate with TSE-EMA when logit aver-
aging is applied, and when Batch Normalization is used.

• The flatness of network weights and generalisation performance both
increase when data augmentation is applied. When SGLD is used, the
flatness changes up or down randomly, while generalisation performance
improves consistently.

4.3 Cross-group analysis

In this section, we perform analysis based on the important quantities observed

to discover trends across different groups of experiments.

4.3.1 Normalised Conditional Mutual Information (NCMI)

We present the minimum values of NCMI (K) for each of the six group of ex-

periments in Table 4.9.

From Table 4.9, we can tell that the training-loss-based complexity measures

(SOTL, SOTL-E_50, TSE-EMA) have the highest values of K(µ) in all groups of

experiments except for the data augmentation one. This means that they are mostly

likely to have a causal connection with the generalisation error in those groups.

In the MLP group as well as the logit averaging group, the majority of complexity

measures have very low values of K with the generalisation error. The largest

K values in these two groups are 0.123 and 0.047 respectively, both achieved

when µ = SOTL-E_50. In these two groups it is more likely that there are some



4. Results and Analysis 51

K(µ) Control MLP ResNet SGLD Data aug-
mentation

Logit aver-
aging

SOTL 0.130 0.012 0.141 0.044 0.116 0.035

SOTL-E_50 0.015 0.123 0.021 0.041 0.032 0.047

TSE-EMA 0.123 0.034 0.141 0.171 0.134 0.029

PACBayes
sharpness

0.071 0.024 0.032 0.015 0.051 0.038

Value
sensitivity

0.037 0.042 0.043 0.041 0.146 0.031

Initial gradi-
ent variance

0.063 0.013 0.013 0.057 0.097 0.023

Final gradient
variance

0.010 0.091 0.002 0.026 0.092 0.027

Table 4.9: Minimum value of NCMI (K(µ)) between complexity measures and the
generalisation error for various groups of experiments. Best K(µ) for each group is in
bold.

other factors influencing the generalisation of neural networks, not captured by

the selected complexity measures.

When µ = value sensitivity, K has relatively small values in all groups but the data

augmentation group, on which it has a value of 0.146. Training neural networks

with data augmentation by transformation makes stronger the connection between

generalisation and the sensitivity to input values.

4.3.2 Kendall’s rank-correlation coefficient

We present Kendall’s rank coefficients between different complexity measures and

the generalisation error, for each group of experiments, in Table 4.11.

We can see from the table that the SOTL complexity measure is positively correlated

with the generalisation error in all groups of experiments except for the data

augmentation one, where the correlation coefficient (-0.097) is very close to zero.

The other two optimisation-based complexity measures can be seen as variations

of the SOTL, where the SOTL-E_50 focuses more on the later stage of training

while TSE-EMA the earlier. Across all groups, the SOTL-E_50 measure is always

negatively correlated with generation error and the TSE-EMA is always positively
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K̄(µ) Control MLP ResNet SGLD Data aug-
mentation

Logit aver-
aging

SOTL 0.325 0.155 0.381 0.140 0.222 0.154

SOTL-E_50 0.050 0.153 0.077 0.116 0.140 0.138

TSE-EMA 0.310 0.133 0.392 0.251 0.182 0.150

PACBayes
sharpness

0.266 0.163 0.333 0.048 0.115 0.156

Value
sensitivity

0.262 0.189 0.266 0.060 0.173 0.138

Initial gradi-
ent variance

0.181 0.082 0.019 0.088 0.140 0.112

Final gradient
variance

0.030 0.113 0.069 0.032 0.125 0.152

Table 4.10: Average value of NCMI (K̄(µ)) between complexity measures and the
generalisation error for various groups of experiments. Best K̄(µ) for each group is in
bold.

correlated. In fact, they are the only two measures out of the seven monitored to have

a consistent correlation with the generalisation error (all negative or all positive).

The PACBayes sharpness and the value sensitivity measures are similar in terms of

their correlation with generalisation error. When one is positively correlated with

generalisation error, so is the other one. Vice versa, their correlation coefficients

are also quite similar, across all groups of experiments.

The initial and the final gradient variances have quite different correlations with the

generalisation error. The initial gradient variance is negatively correlated with the

generalisation error except in the data augmentation group. In that group, the value

of τ(U ; initial gradient variance, g) is 0.073, which is very small and even negligible.

The final gradient variance’s correlation with the generalisation error is more diverse.

The correlation is not strong (the absolute value for the correlation coefficient is

smaller than 0.2), apart from the logit averaging group, where the coefficient is

0.469. This is close to the strongest correlation coefficient 0.473 for that group.

For the control group, the proper complexity measures exclude SOTL-E_50 and

initial gradient variance, whose correlation coefficients with the generalisation

error are -0.228 and -0.436, respectively. The correlation coefficient of SOTL
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τ (U ;µ, g) Control MLP ResNet SGLD Data aug-
mentation

Logit aver-
aging

SOTL 0.640 0.152 0.697 0.236 -0.097 0.414

SOTL-E_50 -0.228 -0.343 -0.101 -0.040 -0.327 -0.354

TSE-EMA 0.610 0.210 0.711 0.475 0.046 0.428

PACBayes
sharpness

0.392 0.186 0.596 -0.253 0.172 0.473

Value
sensitivity

0.400 0.220 0.368 -0.154 0.202 0.469

Initial gradi-
ent variance

-0.436 -0.111 -0.101 -0.048 0.073 -0.339

Final gradient
variance

0.166 -0.149 0.085 -0.176 0.032 0.469

Table 4.11: Kendall’s rank correlation coefficient between complexity measures and
the generalisation error for various groups of experiments. Largest τ (U ;µ, g) for each
group (by magnitude) is in bold.

(0.640) is the largest in absolute value out of all the measures, while that of

TSE-EMA (0.610) is a close second.

For the SGLD group, only SOTL and TSE-EMA remain proper complexity measures

and have non-negative correlation coefficients with the generalisation error (0.236

and 0.475 respectively).

For the MLP group and the data augmentation group, the strongest positive

correlation coefficients are 0.220 and 0.202, respectively, which are relatively

small. For other groups, the strongest positive correlation coefficients are all

larger than 0.45.

Initial gradient variance behaves surprisingly We see that in most cases, the

initial gradient variance is negatively correlated with the generalisation error, which

suggests that the more varied the initial gradients are, the better the generalisation.

This is surprising, as we associate a small gradient variance with gradient vectors

with aligned directions, and thus the gradient update on one mini-batch to transfer

better to other mini-batches. The good gradient transfer means that the training

loss is decreasing faster, and faster training speed. Since we discovered that the
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training speed is a good predictor of generalisation error, this association between

small gradient variance and fast training speed seems to contradict the consistent

negative correlation between gradient variance and generalisation error.

A possible reason for this phenomenon is that different learning rates might cause

the connection between initial gradient variance and generalisation to be different,

as we explained in Section 4.1.

SGLD improves generalisation without altering flatness When the SGLD

optimiser is used instead of the SGD optimiser, it artificially increases the variance

in the stochastic gradient estimator. When we compare pairs of experiments with

the same hyperparameters except for the optimiser used, we found that in the 45

pairs of experiments, 21 experiments have flatter minima with SGLD, and 24 have

sharper minima with SGLD. All experiments have better generalisation when SGLD

is applied. This means that applying an intervention in the form of using SGLD

does not alter the flatness of the optima in a statistically significant way. The

improvement in generalisation brought by this intervention cannot be explained by

the flatness hypothesis. Moreover, in experiments where SGLD is used, PACBayes

flatness gives very low CMI with generalisation error and the correlation with

generalisation error is negligible. This means that not using SGLD is a necessary

condition for the possible mechanism of flatness inducing generalisation.
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5.1 Conclusion

In this dissertation, we set out to investigate the mechanism through which training

speed can be connected with generalisation. We started by hypothesising the

quantities in classical theories that are potentially connected to training speed and

can explain generalisation. Next, we conducted experiments. First to confirm the

connection between training speed and generalisation, and second to find out the

necessary conditions under which the hypotheses can hold.

More concretely, we hypothesised that the connection between training speed and

generalisation can be explained via one of these two quantities:

• Network flatness;

• Gradient transfer.

55
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To validate the hypotheses, we conducted experiments for a large family of neural

networks. The central question our experiments try to answer is: under what

conditions might the two hypotheses be causing the connection between training

speed and generalisation. This question is decomposed into two sub-questions: (1)

under what conditions does the connection exist? (2) assuming that the connection

exists, which of the two hypotheses can potentially cause the connection?

In our experiments, we chose two quantities (PAC-Bayes sharpness and value

sensitivity) to reflect the network flatness and two quantities (initial and final

gradient variances) to reflect the gradient transfer quantitatively. For training

speed, we considered three training-loss-based entities (SOTL, SOTL-E_50, and

TSE-EMA) to reflect the training speed in general, as well as the training speed in

the late and early stages, respectively. Since it is difficult to apply intervention to

the flatness-related or the gradient-transfer-related quantities directly and therefore

to reason about the causal connections that might exist, we instead varied the

hyperparameters of the networks in order to vary the quantities. We experimented

with architectures such as SkipInit (section 4.1), ResNet (subsection 4.2.4), and

MLP (subsection 4.2.3); optimisers such as SGD (section 4.1) and SGLD (subsection

4.2.2); data augmentation techniques such as straighforward transformation and

logit averaging (subsection 4.2.1). By observing the correlation between training

speed and generalisation, between quantities indicative of the validity of hypotheses

and training speed, we reached the following conclusions in Chapter 4:

• In line with the work of Lyle et al. [2020] and Ru et al. [2020], we showed that

training speed exhibits a connection with the generalisation performance of

deep neural networks. We extend the work by showing that the connection

exists when the neural architecture is SkipInit or ResNet, the optimiser is

SGD or SGLD, and logit averaging is used for data augmentation or no data

augmentation at all. It does not exist when the MLP architecture is used for

the CIFAR10 dataset.
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• Network flatness might explain this connection when the optimiser used is

SGD, the neural architecture is SkipInit or ResNet, and logit averaging is

used for data augmentation or no data augmentation at all. It cannot explain

the connection when SGLD is used;

• Gradient transfer might explain this connection when the optimiser used is

SGD, the neural architecture is SkipInit, and logit averaging is used for data

augmentation or no data augmentation at all. It is less likely that it will be

able to explain the connection when SGLD is used as the optimiser or ResNet

as the architecture.

Hence we gained the confirmation of the existence of a connection between training

speed and generalisation in deep neural networks, as well as the conditions under

which the connection might be explainable by at least one of our two hypotheses.

5.2 Discussion and Future Work

The conclusions reached advance our understanding of the mechanism behind the

training-speed-generalisation in two ways:

• Firstly, we know in which cases the connection does not exist or the connection

cannot be explained by one of the two hypotheses. The neural architecture

being suitable for the tasks considered is necessary for the connection to exist,

as demonstrated in the MLP group. The application of SGLD renders the

two hypotheses invalid, and not using Batch Normalization (as in the ResNet

group) is crucial for the gradient transfer hypothesis to remain plausible.

Figuring out why these interventions have the effects could be a direction for

future work.

• Secondly, we gathered some conditions under which the connection exists and

at least one of the hypotheses can potentially explain it. Experimenting further

under these conditions is a direction for future work in order to understand

the true mechanism of the connection.
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Additionally, while doing a large family of experiments, we found some interesting

insights which raise questions for potential future research projects.

• In Section 4.1, we found that the initial gradient variance measure behaves

differently when different learning rates are applied. Namely, its correlation

coefficient with generalisation error monotonically decreases from 0.167 to

-0.611 when the learning rate increases from 0.001 to 0.01. Its correlation

coefficient with TSE-EMA also monotonically decreases from -0.333 to -

0.833 when the learning rate is increased from 0.001 to 0.01. Why does the

intervention of increasing the learning rate change the correlation between

initial gradient variance and the two entities? How do the training regimes,

determined by learning rates, affect how gradient transfer is related to

generalisation?

• We found in Subsection 4.2.1 that data augmentation improves the flatness

as well as generalisation of all networks considered. Is this correlation

actually causation, i.e. the intervention of data augmentation improves

network flatness, and hence better flatness causes better generalisation? Or

is this correlation spurious, and there are other factors causing the better

generalisation performance?

• We found in Subsection 4.2.2 that the intervention of increased gradient

variance causes better generalisation. However, it changes the sharpness of

networks to higher or lower almost randomly. It also makes the sharpness-

based measures much less correlated with training speed, and even negatively

correlated with generalisation error. How does the change in gradient variance

cause such changes? How does reducing gradient variance (e.g. by using larger

batch sizes) change the connection between sharpness and generalisation and

training speed?



Bibliography

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. J. Mach. Learn. Res., 3:463–482, 2002. URL
http://jmlr.org/papers/v3/bartlett02a.html.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin
bounds for neural networks. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 6240–6249, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
b22b257ad0519d4500539da3c8bcf4dd-Abstract.html.

Olivier Bousquet and André Elisseeff. Stability and generalization. J. Mach. Learn. Res.,
2:499–526, 2002. URL http://jmlr.org/papers/v2/bousquet02a.html.

Wray L. Buntine and Andreas S. Weigend. Bayesian back-propagation. Complex Syst., 5
(6), 1991. URL http://www.complex-systems.com/abstracts/v05_i06_a04.html.

Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational
inference, converges to limit cycles for deep networks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=HyWrIgW0W.

Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and Christopher Ré.
A kernel theory of modern data augmentation. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages 1528–1537. PMLR, 2019. URL
http://proceedings.mlr.press/v97/dao19b.html.

Soham De and Samuel L. Smith. Batch normalization biases residual blocks towards the
identity function in deep networks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL
https://proceedings.neurips.cc/paper/2020/hash/
e6b738eca0e6792ba8a9cbcba6c1881d-Abstract.html.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,

59

http://jmlr.org/papers/v3/bartlett02a.html
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
http://jmlr.org/papers/v2/bousquet02a.html
http://www.complex-systems.com/abstracts/v05_i06_a04.html
https://openreview.net/forum?id=HyWrIgW0W
http://proceedings.mlr.press/v97/dao19b.html
https://proceedings.neurips.cc/paper/2020/hash/e6b738eca0e6792ba8a9cbcba6c1881d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e6b738eca0e6792ba8a9cbcba6c1881d-Abstract.html


Bibliography 60

Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pages 1019–1028. PMLR, 2017. URL
http://proceedings.mlr.press/v70/dinh17b.html.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than
training data. In Gal Elidan, Kristian Kersting, and Alexander T. Ihler, editors,
Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence,
UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press, 2017. URL
http://auai.org/uai2017/proceedings/papers/173.pdf.

Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan
Caballero, Linbo Wang, Ioannis Mitliagkas, and Daniel M. Roy. In search of robust
measures of generalization. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL
https://proceedings.neurips.cc/paper/2020/hash/
86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html.

Stanislav Fort, Pawel Krzysztof Nowak, and Srini Narayanan. Stiffness: A new
perspective on generalization in neural networks. CoRR, abs/1901.09491, 2019. URL
http://arxiv.org/abs/1901.09491.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=rJl-b3RcF7.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin.
Linear mode connectivity and the lottery ticket hypothesis. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages 3259–3269.
PMLR, 2020. URL http://proceedings.mlr.press/v119/frankle20a.html.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks.
CoRR, abs/1902.09574, 2019. URL http://arxiv.org/abs/1902.09574.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and
connections for efficient neural network. In Corinna Cortes, Neil D. Lawrence,
Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages
1135–1143, 2015. URL https://proceedings.neurips.cc/paper/2015/hash/
ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In Maria-Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and

http://proceedings.mlr.press/v70/dinh17b.html
http://auai.org/uai2017/proceedings/papers/173.pdf
https://proceedings.neurips.cc/paper/2020/hash/86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/86d7c8a08b4aaa1bc7c599473f5dddda-Abstract.html
http://arxiv.org/abs/1901.09491
https://openreview.net/forum?id=rJl-b3RcF7
http://proceedings.mlr.press/v119/frankle20a.html
http://arxiv.org/abs/1902.09574
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html


Bibliography 61

Conference Proceedings, pages 1225–1234. JMLR.org, 2016. URL
http://proceedings.mlr.press/v48/hardt16.html.

Babak Hassibi and David G. Stork. Second order derivatives for network pruning:
Optimal brain surgeon. In Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles,
editors, Advances in Neural Information Processing Systems 5, [NIPS Conference,
Denver, Colorado, USA, November 30 - December 3,
1992], pages 164–171. Morgan Kaufmann, 1992. URL http://papers.nips.cc/paper/
647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.90. URL
https://doi.org/10.1109/CVPR.2016.90.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Comput., 9(1):1–42, 1997.
doi: 10.1162/neco.1997.9.1.1. URL https://doi.org/10.1162/neco.1997.9.1.1.

W. Ronny Huang, Zeyad Emam, Micah Goldblum, Liam Fowl, Justin K. Terry, Furong
Huang, and Tom Goldstein. Understanding generalization through visualizations.
CoRR, abs/1906.03291, 2019. URL http://arxiv.org/abs/1906.03291.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Francis R. Bach and David M. Blei,
editors, Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference
Proceedings, pages 448–456. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/ioffe15.html.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence
and generalization in neural networks. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 8580–8589, 2018. URL https://proceedings.neurips.cc/paper/
2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio.
Fantastic generalization measures and where to find them. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=SJgIPJBFvH.

M. Kendall. A new measure of rank correlation. Biometrika, 30:81–93, 1938.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap
and sharp minima. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=H1oyRlYgg.

http://proceedings.mlr.press/v48/hardt16.html
http://papers.nips.cc/paper/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon
http://papers.nips.cc/paper/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.1.1
http://arxiv.org/abs/1906.03291
http://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://openreview.net/forum?id=SJgIPJBFvH
https://openreview.net/forum?id=H1oyRlYgg


Bibliography 62

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S.
Touretzky, editor, Advances in Neural Information Processing Systems 2, [NIPS
Conference, Denver, Colorado, USA, November 27-30, 1989], pages 598–605. Morgan
Kaufmann, 1989. URL
http://papers.nips.cc/paper/250-optimal-brain-damage.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient
backprop. In Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert Müller, editors,
Neural Networks: Tricks of the Trade - Second Edition, volume 7700 of Lecture Notes
in Computer Science, pages 9–48. Springer, 2012. doi: 10.1007/978-3-642-35289-8\_3.
URL https://doi.org/10.1007/978-3-642-35289-8_3.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=rJqFGTslg.

Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, 4th Edition. Texts in Computer Science. Springer, 2019. ISBN
978-3-030-11297-4. doi: 10.1007/978-3-030-11298-1. URL
https://doi.org/10.1007/978-3-030-11298-1.

Tengyuan Liang, Tomaso A. Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao
metric, geometry, and complexity of neural networks. In Kamalika Chaudhuri and
Masashi Sugiyama, editors, The 22nd International Conference on Artificial
Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan,
volume 89 of Proceedings of Machine Learning Research, pages 888–896. PMLR, 2019.
URL http://proceedings.mlr.press/v89/liang19a.html.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the
value of network pruning. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=rJlnB3C5Ym.

Clare Lyle, Lisa Schut, Robin Ru, Yarin Gal, and Mark van der Wilk. A bayesian
perspective on training speed and model selection. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances
in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
75a7c30fc0063c4952d7eb044a3c0897-Abstract.html.

David A. McAllester. Pac-bayesian model averaging. In Shai Ben-David and Philip M.
Long, editors, Proceedings of the Twelfth Annual Conference on Computational

http://papers.nips.cc/paper/250-optimal-brain-damage
https://doi.org/10.1007/978-3-642-35289-8_3
https://openreview.net/forum?id=rJqFGTslg
https://doi.org/10.1007/978-3-030-11298-1
http://proceedings.mlr.press/v89/liang19a.html
https://openreview.net/forum?id=rJlnB3C5Ym
https://proceedings.neurips.cc/paper/2020/hash/75a7c30fc0063c4952d7eb044a3c0897-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/75a7c30fc0063c4952d7eb044a3c0897-Abstract.html


Bibliography 63

Learning Theory, COLT 1999, Santa Cruz, CA, USA, July 7-9, 1999, pages 164–170.
ACM, 1999. doi: 10.1145/307400.307435. URL
https://doi.org/10.1145/307400.307435.

Sayan Mukherjee, Partha Niyogi, Tomaso A. Poggio, and Ryan M. Rifkin. Learning
theory: stability is sufficient for generalization and necessary and sufficient for
consistency of empirical risk minimization. Adv. Comput. Math., 25(1-3):161–193,
2006. doi: 10.1007/s10444-004-7634-z. URL
https://doi.org/10.1007/s10444-004-7634-z.

Seth Nabarro, Stoil Ganev, Adrià Garriga-Alonso, Vincent Fortuin, Mark van der Wilk,
and Laurence Aitchison. Data augmentation in bayesian neural networks and the cold
posterior effect. CoRR, abs/2106.05586, 2021. URL
https://arxiv.org/abs/2106.05586.

Vaishnavh Nagarajan and J. Zico Kolter. Generalization in deep networks: The role of
distance from initialization. CoRR, abs/1901.01672, 2019. URL
http://arxiv.org/abs/1901.01672.

Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro. Path-sgd:
Path-normalized optimization in deep neural networks. In Corinna Cortes, Neil D.
Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 2422–2430, 2015a. URL https://proceedings.neurips.cc/paper/
2015/hash/eaa32c96f620053cf442ad32258076b9-Abstract.html.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in
neural networks. In Peter Grünwald, Elad Hazan, and Satyen Kale, editors,
Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France,
July 3-6, 2015, volume 40 of JMLR Workshop and Conference Proceedings, pages
1376–1401. JMLR.org, 2015b. URL
http://proceedings.mlr.press/v40/Neyshabur15.html.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro.
Exploring generalization in deep learning. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5947–5956, 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/10ce03a1ed01077e3e289f3e53c72813-Abstract.html.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems

https://doi.org/10.1145/307400.307435
https://doi.org/10.1007/s10444-004-7634-z
https://arxiv.org/abs/2106.05586
http://arxiv.org/abs/1901.01672
https://proceedings.neurips.cc/paper/2015/hash/eaa32c96f620053cf442ad32258076b9-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/eaa32c96f620053cf442ad32258076b9-Abstract.html
http://proceedings.mlr.press/v40/Neyshabur15.html
https://proceedings.neurips.cc/paper/2017/hash/10ce03a1ed01077e3e289f3e53c72813-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/10ce03a1ed01077e3e289f3e53c72813-Abstract.html


Bibliography 64

2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Tomaso Poggio, Ryan Rifkin, Sayan Mukherjee, and Partha Niyogi. General conditions
for predictivity in learning theory. Nature, 428(6981):419–422, 2004.

Carl Edward Rasmussen and Zoubin Ghahramani. Occam’s razor. In Todd K. Leen,
Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information
Processing Systems 13, Papers from Neural Information Processing Systems (NIPS)
2000, Denver, CO, USA, pages 294–300. MIT Press, 2000. URL
https://proceedings.neurips.cc/paper/2000/hash/
0950ca92a4dcf426067cfd2246bb5ff3-Abstract.html.

Jorma Rissanen. A universal prior for integers and estimation by minimum description
length. The Annals of statistics, pages 416–431, 1983.

Binxin Ru, Clare Lyle, Lisa Schut, Mark van der Wilk, and Yarin Gal. Revisiting the
train loss: an efficient performance estimator for neural architecture search. CoRR,
abs/2006.04492, 2020. URL https://arxiv.org/abs/2006.04492.

Karthik Abinav Sankararaman, Soham De, Zheng Xu, W. Ronny Huang, and Tom
Goldstein. The impact of neural network overparameterization on gradient confusion
and stochastic gradient descent. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 8469–8479. PMLR, 2020. URL
http://proceedings.mlr.press/v119/sankararaman20a.html.

Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization and
stochastic gradient descent. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=BJij4yg0Z.

Samuel L. Smith, Benoit Dherin, David G. T. Barrett, and Soham De. On the origin of
implicit regularization in stochastic gradient descent. CoRR, abs/2101.12176, 2021.
URL https://arxiv.org/abs/2101.12176.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai,
Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit,
Mario Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision.
CoRR, abs/2105.01601, 2021. URL https://arxiv.org/abs/2105.01601.

Mark van der Wilk, Matthias Bauer, S. T. John, and James Hensman. Learning
invariances using the marginal likelihood. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 9960–9970, 2018. URL https://proceedings.neurips.cc/paper/
2018/hash/d465f14a648b3d0a1faa6f447e526c60-Abstract.html.

Vladimir Vapnik. Statistical learning theory. Wiley, 1998. ISBN 978-0-471-03003-4.

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/0950ca92a4dcf426067cfd2246bb5ff3-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/0950ca92a4dcf426067cfd2246bb5ff3-Abstract.html
https://arxiv.org/abs/2006.04492
http://proceedings.mlr.press/v119/sankararaman20a.html
https://openreview.net/forum?id=BJij4yg0Z
https://arxiv.org/abs/2101.12176
https://arxiv.org/abs/2105.01601
https://proceedings.neurips.cc/paper/2018/hash/d465f14a648b3d0a1faa6f447e526c60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d465f14a648b3d0a1faa6f447e526c60-Abstract.html


Bibliography 65

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. In Measures of complexity, pages 11–30.
Springer, 2015.

Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. In Piero P.
Bonissone, Max Henrion, Laveen N. Kanal, and John F. Lemmer, editors, UAI ’90:
Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence,
MIT, Cambridge, MA, USA, July 27-29, 1990, pages 255–270. Elsevier, 1990. URL
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&
article_id=1918&proceeding_id=1006.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th
International Conference on Machine Learning, ICML 2011, Bellevue, Washington,
USA, June 28 - July 2, 2011, pages 681–688. Omnipress, 2011. URL
https://icml.cc/2011/papers/398_icmlpaper.pdf.

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht.
The marginal value of adaptive gradient methods in machine learning. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 4148–4158, 2017. URL
https://proceedings.neurips.cc/paper/2017/hash/
81b3833e2504647f9d794f7d7b9bf341-Abstract.html.

Sho Yaida. Fluctuation-dissipation relations for stochastic gradient descent. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=SkNksoRctQ.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=Sy8gdB9xx.

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1918&proceeding_id=1006
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1918&proceeding_id=1006
https://icml.cc/2011/papers/398_icmlpaper.pdf
https://proceedings.neurips.cc/paper/2017/hash/81b3833e2504647f9d794f7d7b9bf341-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/81b3833e2504647f9d794f7d7b9bf341-Abstract.html
https://openreview.net/forum?id=SkNksoRctQ
https://openreview.net/forum?id=Sy8gdB9xx


Appendices

66



A
All Experimental Results

In this appendix we present the raw data for all of our experiments in the six
different groups.
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